Fixed comments that were inconsistent with the style guidelines described in C++ core guidelines and the modern C++/WinRT language projections and removed trailing whitespace. Inserted a space after the beginning of the comment so the text wasn't touching the // on all occurrences. Removed all occurrences of trailing whitespace
298 lines
7.3 KiB
C++
298 lines
7.3 KiB
C++
// Copyright (c) Microsoft Corporation. All rights reserved.
|
|
// Licensed under the MIT License.
|
|
|
|
//----------------------------------------------------------------------------
|
|
// File trans.c
|
|
// Copyright (C) 1995-96 Microsoft
|
|
// Date 01-16-95
|
|
//
|
|
//
|
|
// Description
|
|
//
|
|
// Contains sin, cos and tan for rationals
|
|
//
|
|
//
|
|
//----------------------------------------------------------------------------
|
|
|
|
#include "pch.h"
|
|
#include "ratpak.h"
|
|
|
|
|
|
|
|
void scalerat( _Inout_ PRAT *pa, ANGLE_TYPE angletype, uint32_t radix, int32_t precision )
|
|
{
|
|
switch ( angletype )
|
|
{
|
|
case ANGLE_RAD:
|
|
scale2pi( pa, radix, precision);
|
|
break;
|
|
case ANGLE_DEG:
|
|
scale( pa, rat_360, radix, precision);
|
|
break;
|
|
case ANGLE_GRAD:
|
|
scale( pa, rat_400, radix, precision);
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// FUNCTION: sinrat, _sinrat
|
|
//
|
|
// ARGUMENTS: x PRAT representation of number to take the sine of
|
|
//
|
|
// RETURN: sin of x in PRAT form.
|
|
//
|
|
// EXPLANATION: This uses Taylor series
|
|
//
|
|
// n
|
|
// ___ 2j+1
|
|
// \ ] j X
|
|
// \ -1 * ---------
|
|
// / (2j+1)!
|
|
// /__]
|
|
// j=0
|
|
// or,
|
|
// n
|
|
// ___ 2
|
|
// \ ] -X
|
|
// \ thisterm ; where thisterm = thisterm * ---------
|
|
// / j j+1 j (2j)*(2j+1)
|
|
// /__]
|
|
// j=0
|
|
//
|
|
// thisterm = X ; and stop when thisterm < precision used.
|
|
// 0 n
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
|
|
|
|
void _sinrat( PRAT *px, int32_t precision)
|
|
|
|
{
|
|
CREATETAYLOR();
|
|
|
|
DUPRAT(pret,*px);
|
|
DUPRAT(thisterm,*px);
|
|
|
|
DUPNUM(n2,num_one);
|
|
xx->pp->sign *= -1;
|
|
|
|
do {
|
|
NEXTTERM(xx,INC(n2) DIVNUM(n2) INC(n2) DIVNUM(n2), precision);
|
|
} while ( !SMALL_ENOUGH_RAT( thisterm, precision) );
|
|
|
|
DESTROYTAYLOR();
|
|
|
|
// Since *px might be epsilon above 1 or below -1, due to TRIMIT we need
|
|
// this trick here.
|
|
inbetween(px, rat_one, precision);
|
|
|
|
// Since *px might be epsilon near zero we must set it to zero.
|
|
if ( rat_le(*px, rat_smallest, precision) && rat_ge(*px, rat_negsmallest, precision) )
|
|
{
|
|
DUPRAT(*px,rat_zero);
|
|
}
|
|
}
|
|
|
|
void sinrat( PRAT *px, uint32_t radix, int32_t precision)
|
|
{
|
|
scale2pi(px, radix, precision);
|
|
_sinrat(px, precision);
|
|
}
|
|
|
|
void sinanglerat( _Inout_ PRAT *pa, ANGLE_TYPE angletype, uint32_t radix, int32_t precision)
|
|
|
|
{
|
|
scalerat( pa, angletype, radix, precision);
|
|
switch ( angletype )
|
|
{
|
|
case ANGLE_DEG:
|
|
if ( rat_gt( *pa, rat_180, precision) )
|
|
{
|
|
subrat(pa, rat_360, precision);
|
|
}
|
|
divrat( pa, rat_180, precision);
|
|
mulrat( pa, pi, precision);
|
|
break;
|
|
case ANGLE_GRAD:
|
|
if ( rat_gt( *pa, rat_200, precision) )
|
|
{
|
|
subrat(pa,rat_400, precision);
|
|
}
|
|
divrat( pa, rat_200, precision);
|
|
mulrat( pa, pi, precision);
|
|
break;
|
|
}
|
|
_sinrat( pa, precision);
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// FUNCTION: cosrat, _cosrat
|
|
//
|
|
// ARGUMENTS: x PRAT representation of number to take the cosine of
|
|
//
|
|
// RETURN: cosine of x in PRAT form.
|
|
//
|
|
// EXPLANATION: This uses Taylor series
|
|
//
|
|
// n
|
|
// ___ 2j j
|
|
// \ ] X -1
|
|
// \ ---------
|
|
// / (2j)!
|
|
// /__]
|
|
// j=0
|
|
// or,
|
|
// n
|
|
// ___ 2
|
|
// \ ] -X
|
|
// \ thisterm ; where thisterm = thisterm * ---------
|
|
// / j j+1 j (2j)*(2j+1)
|
|
// /__]
|
|
// j=0
|
|
//
|
|
// thisterm = 1 ; and stop when thisterm < precision used.
|
|
// 0 n
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
|
|
|
|
void _cosrat( PRAT *px, uint32_t radix, int32_t precision)
|
|
|
|
{
|
|
CREATETAYLOR();
|
|
|
|
destroynum(pret->pp);
|
|
destroynum(pret->pq);
|
|
|
|
pret->pp=longtonum( 1L, radix);
|
|
pret->pq=longtonum( 1L, radix);
|
|
|
|
DUPRAT(thisterm,pret)
|
|
|
|
n2=longtonum(0L, radix);
|
|
xx->pp->sign *= -1;
|
|
|
|
do {
|
|
NEXTTERM(xx,INC(n2) DIVNUM(n2) INC(n2) DIVNUM(n2), precision);
|
|
} while ( !SMALL_ENOUGH_RAT( thisterm, precision) );
|
|
|
|
DESTROYTAYLOR();
|
|
// Since *px might be epsilon above 1 or below -1, due to TRIMIT we need
|
|
// this trick here.
|
|
inbetween(px, rat_one, precision);
|
|
// Since *px might be epsilon near zero we must set it to zero.
|
|
if ( rat_le(*px, rat_smallest, precision) && rat_ge(*px, rat_negsmallest, precision) )
|
|
{
|
|
DUPRAT(*px,rat_zero);
|
|
}
|
|
}
|
|
|
|
void cosrat( PRAT *px, uint32_t radix, int32_t precision)
|
|
{
|
|
scale2pi(px, radix, precision);
|
|
_cosrat(px, radix, precision);
|
|
}
|
|
|
|
void cosanglerat( _Inout_ PRAT *pa, ANGLE_TYPE angletype, uint32_t radix, int32_t precision)
|
|
|
|
{
|
|
scalerat( pa, angletype, radix, precision);
|
|
switch ( angletype )
|
|
{
|
|
case ANGLE_DEG:
|
|
if ( rat_gt( *pa, rat_180, precision) )
|
|
{
|
|
PRAT ptmp= nullptr;
|
|
DUPRAT(ptmp,rat_360);
|
|
subrat(&ptmp, *pa, precision);
|
|
destroyrat(*pa);
|
|
*pa=ptmp;
|
|
}
|
|
divrat( pa, rat_180, precision);
|
|
mulrat( pa, pi, precision);
|
|
break;
|
|
case ANGLE_GRAD:
|
|
if ( rat_gt( *pa, rat_200, precision) )
|
|
{
|
|
PRAT ptmp= nullptr;
|
|
DUPRAT(ptmp,rat_400);
|
|
subrat(&ptmp, *pa, precision);
|
|
destroyrat(*pa);
|
|
*pa=ptmp;
|
|
}
|
|
divrat( pa, rat_200, precision);
|
|
mulrat( pa, pi, precision);
|
|
break;
|
|
}
|
|
_cosrat( pa, radix, precision);
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// FUNCTION: tanrat, _tanrat
|
|
//
|
|
// ARGUMENTS: x PRAT representation of number to take the tangent of
|
|
//
|
|
// RETURN: tan of x in PRAT form.
|
|
//
|
|
// EXPLANATION: This uses sinrat and cosrat
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
|
|
|
|
void _tanrat( PRAT *px, uint32_t radix, int32_t precision)
|
|
|
|
{
|
|
PRAT ptmp= nullptr;
|
|
|
|
DUPRAT(ptmp,*px);
|
|
_sinrat(px, precision);
|
|
_cosrat(&ptmp, radix, precision);
|
|
if ( zerrat( ptmp ) )
|
|
{
|
|
destroyrat(ptmp);
|
|
throw( CALC_E_DOMAIN );
|
|
}
|
|
divrat(px, ptmp, precision);
|
|
|
|
destroyrat(ptmp);
|
|
|
|
}
|
|
|
|
void tanrat( PRAT *px, uint32_t radix, int32_t precision)
|
|
{
|
|
scale2pi(px, radix, precision);
|
|
_tanrat(px, radix, precision);
|
|
}
|
|
|
|
void tananglerat( _Inout_ PRAT *pa, ANGLE_TYPE angletype, uint32_t radix, int32_t precision)
|
|
|
|
{
|
|
scalerat( pa, angletype, radix, precision);
|
|
switch ( angletype )
|
|
{
|
|
case ANGLE_DEG:
|
|
if ( rat_gt( *pa, rat_180, precision) )
|
|
{
|
|
subrat(pa, rat_180, precision);
|
|
}
|
|
divrat( pa, rat_180, precision);
|
|
mulrat( pa, pi, precision);
|
|
break;
|
|
case ANGLE_GRAD:
|
|
if ( rat_gt( *pa, rat_200, precision) )
|
|
{
|
|
subrat(pa, rat_200, precision);
|
|
}
|
|
divrat( pa, rat_200, precision);
|
|
mulrat( pa, pi, precision);
|
|
break;
|
|
}
|
|
_tanrat( pa, radix, precision);
|
|
}
|
|
|