calculator/src/CalcManager/Ratpack/trans.cpp
Will 1113ff4b86 Updating comments per the C++ core guidelines and removing trailing whitespace (#194)
Fixed comments that were inconsistent with the style guidelines described in C++ core guidelines and the modern C++/WinRT language projections and removed trailing whitespace.

Inserted a space after the beginning of the comment so the text wasn't touching the // on all occurrences.

Removed all occurrences of trailing whitespace
2019-03-14 23:30:07 -07:00

298 lines
7.3 KiB
C++

// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
//----------------------------------------------------------------------------
// File trans.c
// Copyright (C) 1995-96 Microsoft
// Date 01-16-95
//
//
// Description
//
// Contains sin, cos and tan for rationals
//
//
//----------------------------------------------------------------------------
#include "pch.h"
#include "ratpak.h"
void scalerat( _Inout_ PRAT *pa, ANGLE_TYPE angletype, uint32_t radix, int32_t precision )
{
switch ( angletype )
{
case ANGLE_RAD:
scale2pi( pa, radix, precision);
break;
case ANGLE_DEG:
scale( pa, rat_360, radix, precision);
break;
case ANGLE_GRAD:
scale( pa, rat_400, radix, precision);
break;
}
}
//-----------------------------------------------------------------------------
//
// FUNCTION: sinrat, _sinrat
//
// ARGUMENTS: x PRAT representation of number to take the sine of
//
// RETURN: sin of x in PRAT form.
//
// EXPLANATION: This uses Taylor series
//
// n
// ___ 2j+1
// \ ] j X
// \ -1 * ---------
// / (2j+1)!
// /__]
// j=0
// or,
// n
// ___ 2
// \ ] -X
// \ thisterm ; where thisterm = thisterm * ---------
// / j j+1 j (2j)*(2j+1)
// /__]
// j=0
//
// thisterm = X ; and stop when thisterm < precision used.
// 0 n
//
//-----------------------------------------------------------------------------
void _sinrat( PRAT *px, int32_t precision)
{
CREATETAYLOR();
DUPRAT(pret,*px);
DUPRAT(thisterm,*px);
DUPNUM(n2,num_one);
xx->pp->sign *= -1;
do {
NEXTTERM(xx,INC(n2) DIVNUM(n2) INC(n2) DIVNUM(n2), precision);
} while ( !SMALL_ENOUGH_RAT( thisterm, precision) );
DESTROYTAYLOR();
// Since *px might be epsilon above 1 or below -1, due to TRIMIT we need
// this trick here.
inbetween(px, rat_one, precision);
// Since *px might be epsilon near zero we must set it to zero.
if ( rat_le(*px, rat_smallest, precision) && rat_ge(*px, rat_negsmallest, precision) )
{
DUPRAT(*px,rat_zero);
}
}
void sinrat( PRAT *px, uint32_t radix, int32_t precision)
{
scale2pi(px, radix, precision);
_sinrat(px, precision);
}
void sinanglerat( _Inout_ PRAT *pa, ANGLE_TYPE angletype, uint32_t radix, int32_t precision)
{
scalerat( pa, angletype, radix, precision);
switch ( angletype )
{
case ANGLE_DEG:
if ( rat_gt( *pa, rat_180, precision) )
{
subrat(pa, rat_360, precision);
}
divrat( pa, rat_180, precision);
mulrat( pa, pi, precision);
break;
case ANGLE_GRAD:
if ( rat_gt( *pa, rat_200, precision) )
{
subrat(pa,rat_400, precision);
}
divrat( pa, rat_200, precision);
mulrat( pa, pi, precision);
break;
}
_sinrat( pa, precision);
}
//-----------------------------------------------------------------------------
//
// FUNCTION: cosrat, _cosrat
//
// ARGUMENTS: x PRAT representation of number to take the cosine of
//
// RETURN: cosine of x in PRAT form.
//
// EXPLANATION: This uses Taylor series
//
// n
// ___ 2j j
// \ ] X -1
// \ ---------
// / (2j)!
// /__]
// j=0
// or,
// n
// ___ 2
// \ ] -X
// \ thisterm ; where thisterm = thisterm * ---------
// / j j+1 j (2j)*(2j+1)
// /__]
// j=0
//
// thisterm = 1 ; and stop when thisterm < precision used.
// 0 n
//
//-----------------------------------------------------------------------------
void _cosrat( PRAT *px, uint32_t radix, int32_t precision)
{
CREATETAYLOR();
destroynum(pret->pp);
destroynum(pret->pq);
pret->pp=longtonum( 1L, radix);
pret->pq=longtonum( 1L, radix);
DUPRAT(thisterm,pret)
n2=longtonum(0L, radix);
xx->pp->sign *= -1;
do {
NEXTTERM(xx,INC(n2) DIVNUM(n2) INC(n2) DIVNUM(n2), precision);
} while ( !SMALL_ENOUGH_RAT( thisterm, precision) );
DESTROYTAYLOR();
// Since *px might be epsilon above 1 or below -1, due to TRIMIT we need
// this trick here.
inbetween(px, rat_one, precision);
// Since *px might be epsilon near zero we must set it to zero.
if ( rat_le(*px, rat_smallest, precision) && rat_ge(*px, rat_negsmallest, precision) )
{
DUPRAT(*px,rat_zero);
}
}
void cosrat( PRAT *px, uint32_t radix, int32_t precision)
{
scale2pi(px, radix, precision);
_cosrat(px, radix, precision);
}
void cosanglerat( _Inout_ PRAT *pa, ANGLE_TYPE angletype, uint32_t radix, int32_t precision)
{
scalerat( pa, angletype, radix, precision);
switch ( angletype )
{
case ANGLE_DEG:
if ( rat_gt( *pa, rat_180, precision) )
{
PRAT ptmp= nullptr;
DUPRAT(ptmp,rat_360);
subrat(&ptmp, *pa, precision);
destroyrat(*pa);
*pa=ptmp;
}
divrat( pa, rat_180, precision);
mulrat( pa, pi, precision);
break;
case ANGLE_GRAD:
if ( rat_gt( *pa, rat_200, precision) )
{
PRAT ptmp= nullptr;
DUPRAT(ptmp,rat_400);
subrat(&ptmp, *pa, precision);
destroyrat(*pa);
*pa=ptmp;
}
divrat( pa, rat_200, precision);
mulrat( pa, pi, precision);
break;
}
_cosrat( pa, radix, precision);
}
//-----------------------------------------------------------------------------
//
// FUNCTION: tanrat, _tanrat
//
// ARGUMENTS: x PRAT representation of number to take the tangent of
//
// RETURN: tan of x in PRAT form.
//
// EXPLANATION: This uses sinrat and cosrat
//
//-----------------------------------------------------------------------------
void _tanrat( PRAT *px, uint32_t radix, int32_t precision)
{
PRAT ptmp= nullptr;
DUPRAT(ptmp,*px);
_sinrat(px, precision);
_cosrat(&ptmp, radix, precision);
if ( zerrat( ptmp ) )
{
destroyrat(ptmp);
throw( CALC_E_DOMAIN );
}
divrat(px, ptmp, precision);
destroyrat(ptmp);
}
void tanrat( PRAT *px, uint32_t radix, int32_t precision)
{
scale2pi(px, radix, precision);
_tanrat(px, radix, precision);
}
void tananglerat( _Inout_ PRAT *pa, ANGLE_TYPE angletype, uint32_t radix, int32_t precision)
{
scalerat( pa, angletype, radix, precision);
switch ( angletype )
{
case ANGLE_DEG:
if ( rat_gt( *pa, rat_180, precision) )
{
subrat(pa, rat_180, precision);
}
divrat( pa, rat_180, precision);
mulrat( pa, pi, precision);
break;
case ANGLE_GRAD:
if ( rat_gt( *pa, rat_200, precision) )
{
subrat(pa, rat_200, precision);
}
divrat( pa, rat_200, precision);
mulrat( pa, pi, precision);
break;
}
_tanrat( pa, radix, precision);
}