// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. //---------------------------------------------------------------------------- // File trans.c // Copyright (C) 1995-96 Microsoft // Date 01-16-95 // // // Description // // Contains sin, cos and tan for rationals // // //---------------------------------------------------------------------------- #include "pch.h" #include "ratpak.h" void scalerat( _Inout_ PRAT *pa, ANGLE_TYPE angletype, uint32_t radix, int32_t precision ) { switch ( angletype ) { case ANGLE_RAD: scale2pi( pa, radix, precision); break; case ANGLE_DEG: scale( pa, rat_360, radix, precision); break; case ANGLE_GRAD: scale( pa, rat_400, radix, precision); break; } } //----------------------------------------------------------------------------- // // FUNCTION: sinrat, _sinrat // // ARGUMENTS: x PRAT representation of number to take the sine of // // RETURN: sin of x in PRAT form. // // EXPLANATION: This uses Taylor series // // n // ___ 2j+1 // \ ] j X // \ -1 * --------- // / (2j+1)! // /__] // j=0 // or, // n // ___ 2 // \ ] -X // \ thisterm ; where thisterm = thisterm * --------- // / j j+1 j (2j)*(2j+1) // /__] // j=0 // // thisterm = X ; and stop when thisterm < precision used. // 0 n // //----------------------------------------------------------------------------- void _sinrat( PRAT *px, int32_t precision) { CREATETAYLOR(); DUPRAT(pret,*px); DUPRAT(thisterm,*px); DUPNUM(n2,num_one); xx->pp->sign *= -1; do { NEXTTERM(xx,INC(n2) DIVNUM(n2) INC(n2) DIVNUM(n2), precision); } while ( !SMALL_ENOUGH_RAT( thisterm, precision) ); DESTROYTAYLOR(); // Since *px might be epsilon above 1 or below -1, due to TRIMIT we need // this trick here. inbetween(px, rat_one, precision); // Since *px might be epsilon near zero we must set it to zero. if ( rat_le(*px, rat_smallest, precision) && rat_ge(*px, rat_negsmallest, precision) ) { DUPRAT(*px,rat_zero); } } void sinrat( PRAT *px, uint32_t radix, int32_t precision) { scale2pi(px, radix, precision); _sinrat(px, precision); } void sinanglerat( _Inout_ PRAT *pa, ANGLE_TYPE angletype, uint32_t radix, int32_t precision) { scalerat( pa, angletype, radix, precision); switch ( angletype ) { case ANGLE_DEG: if ( rat_gt( *pa, rat_180, precision) ) { subrat(pa, rat_360, precision); } divrat( pa, rat_180, precision); mulrat( pa, pi, precision); break; case ANGLE_GRAD: if ( rat_gt( *pa, rat_200, precision) ) { subrat(pa,rat_400, precision); } divrat( pa, rat_200, precision); mulrat( pa, pi, precision); break; } _sinrat( pa, precision); } //----------------------------------------------------------------------------- // // FUNCTION: cosrat, _cosrat // // ARGUMENTS: x PRAT representation of number to take the cosine of // // RETURN: cosine of x in PRAT form. // // EXPLANATION: This uses Taylor series // // n // ___ 2j j // \ ] X -1 // \ --------- // / (2j)! // /__] // j=0 // or, // n // ___ 2 // \ ] -X // \ thisterm ; where thisterm = thisterm * --------- // / j j+1 j (2j)*(2j+1) // /__] // j=0 // // thisterm = 1 ; and stop when thisterm < precision used. // 0 n // //----------------------------------------------------------------------------- void _cosrat( PRAT *px, uint32_t radix, int32_t precision) { CREATETAYLOR(); destroynum(pret->pp); destroynum(pret->pq); pret->pp=longtonum( 1L, radix); pret->pq=longtonum( 1L, radix); DUPRAT(thisterm,pret) n2=longtonum(0L, radix); xx->pp->sign *= -1; do { NEXTTERM(xx,INC(n2) DIVNUM(n2) INC(n2) DIVNUM(n2), precision); } while ( !SMALL_ENOUGH_RAT( thisterm, precision) ); DESTROYTAYLOR(); // Since *px might be epsilon above 1 or below -1, due to TRIMIT we need // this trick here. inbetween(px, rat_one, precision); // Since *px might be epsilon near zero we must set it to zero. if ( rat_le(*px, rat_smallest, precision) && rat_ge(*px, rat_negsmallest, precision) ) { DUPRAT(*px,rat_zero); } } void cosrat( PRAT *px, uint32_t radix, int32_t precision) { scale2pi(px, radix, precision); _cosrat(px, radix, precision); } void cosanglerat( _Inout_ PRAT *pa, ANGLE_TYPE angletype, uint32_t radix, int32_t precision) { scalerat( pa, angletype, radix, precision); switch ( angletype ) { case ANGLE_DEG: if ( rat_gt( *pa, rat_180, precision) ) { PRAT ptmp= nullptr; DUPRAT(ptmp,rat_360); subrat(&ptmp, *pa, precision); destroyrat(*pa); *pa=ptmp; } divrat( pa, rat_180, precision); mulrat( pa, pi, precision); break; case ANGLE_GRAD: if ( rat_gt( *pa, rat_200, precision) ) { PRAT ptmp= nullptr; DUPRAT(ptmp,rat_400); subrat(&ptmp, *pa, precision); destroyrat(*pa); *pa=ptmp; } divrat( pa, rat_200, precision); mulrat( pa, pi, precision); break; } _cosrat( pa, radix, precision); } //----------------------------------------------------------------------------- // // FUNCTION: tanrat, _tanrat // // ARGUMENTS: x PRAT representation of number to take the tangent of // // RETURN: tan of x in PRAT form. // // EXPLANATION: This uses sinrat and cosrat // //----------------------------------------------------------------------------- void _tanrat( PRAT *px, uint32_t radix, int32_t precision) { PRAT ptmp= nullptr; DUPRAT(ptmp,*px); _sinrat(px, precision); _cosrat(&ptmp, radix, precision); if ( zerrat( ptmp ) ) { destroyrat(ptmp); throw( CALC_E_DOMAIN ); } divrat(px, ptmp, precision); destroyrat(ptmp); } void tanrat( PRAT *px, uint32_t radix, int32_t precision) { scale2pi(px, radix, precision); _tanrat(px, radix, precision); } void tananglerat( _Inout_ PRAT *pa, ANGLE_TYPE angletype, uint32_t radix, int32_t precision) { scalerat( pa, angletype, radix, precision); switch ( angletype ) { case ANGLE_DEG: if ( rat_gt( *pa, rat_180, precision) ) { subrat(pa, rat_180, precision); } divrat( pa, rat_180, precision); mulrat( pa, pi, precision); break; case ANGLE_GRAD: if ( rat_gt( *pa, rat_200, precision) ) { subrat(pa, rat_200, precision); } divrat( pa, rat_200, precision); mulrat( pa, pi, precision); break; } _tanrat( pa, radix, precision); }