Updating comments per the C++ core guidelines and removing trailing whitespace (#194)

Fixed comments that were inconsistent with the style guidelines described in C++ core guidelines and the modern C++/WinRT language projections and removed trailing whitespace.

Inserted a space after the beginning of the comment so the text wasn't touching the // on all occurrences.

Removed all occurrences of trailing whitespace
This commit is contained in:
Will
2019-03-15 02:30:07 -04:00
committed by Howard Wolosky
parent 62317fd63b
commit 1113ff4b86
82 changed files with 509 additions and 510 deletions

View File

@@ -2,17 +2,17 @@
// Licensed under the MIT License.
//-----------------------------------------------------------------------------
// Package Title ratpak
// File basex.c
// Copyright (C) 1995-97 Microsoft
// Date 03-14-97
//
//
// Description
//
// Contains number routines for internal base computations, these assume
// internal base is a power of 2.
//
// Package Title ratpak
// File basex.c
// Copyright (C) 1995-97 Microsoft
// Date 03-14-97
//
//
// Description
//
// Contains number routines for internal base computations, these assume
// internal base is a power of 2.
//
//-----------------------------------------------------------------------------
#include "pch.h"
#include "ratpak.h"
@@ -41,7 +41,7 @@ void __inline mulnumx( PNUMBER *pa, PNUMBER b )
{
// If b is not one we multiply
if ( (*pa)->cdigit > 1 || (*pa)->mant[0] != 1 || (*pa)->exp != 0 )
{
{
// pa and b are both non-one.
_mulnumx( pa, b );
}
@@ -91,7 +91,7 @@ void _mulnumx( PNUMBER *pa, PNUMBER b )
MANTTYPE da=0; // da is the digit from the fist number.
TWO_MANTTYPE cy=0; // cy is the carry resulting from the addition of
// a multiplied row into the result.
TWO_MANTTYPE mcy=0; // mcy is the resultant from a single
TWO_MANTTYPE mcy=0; // mcy is the resultant from a single
// multiply, AND the carry of that multiply.
long icdigit=0; // Index of digit being calculated in final result.
@@ -110,8 +110,8 @@ void _mulnumx( PNUMBER *pa, PNUMBER b )
{
da = *ptra++;
ptrb = b->mant;
// Shift ptrc, and ptrcoffset, one for each digit
// Shift ptrc, and ptrcoffset, one for each digit
ptrc = ptrcoffset++;
for ( ibdigit = b->cdigit; ibdigit > 0; ibdigit-- )
@@ -126,28 +126,28 @@ void _mulnumx( PNUMBER *pa, PNUMBER b )
c->cdigit++;
}
}
// If result is nonzero, or while result of carry is nonzero...
while ( mcy || cy )
{
// update carry from addition(s) and multiply.
cy += (TWO_MANTTYPE)ptrc[icdigit]+((DWORD)mcy&((DWORD)~BASEX));
// update result digit from
// update result digit from
ptrc[icdigit++]=(MANTTYPE)((DWORD)cy&((DWORD)~BASEX));
// update carries from
mcy >>= BASEXPWR;
cy >>= BASEXPWR;
}
ptrb++;
ptrc++;
}
}
// prevent different kinds of zeros, by stripping leading duplicate zeros.
// digits are in order of increasing significance.
while ( c->cdigit > 1 && c->mant[c->cdigit-1] == 0 )
@@ -198,7 +198,7 @@ void numpowlongx( _Inout_ PNUMBER *proot, _In_ long power )
}
destroynum( *proot );
*proot=lret;
}
void _divnumx( PNUMBER *pa, PNUMBER b, int32_t precision);
@@ -275,14 +275,14 @@ void _divnumx( PNUMBER *pa, PNUMBER b, int32_t precision)
a=*pa;
if ( thismax < a->cdigit )
{
// a has more digits than precision specified, bump up digits to shoot
// a has more digits than precision specified, bump up digits to shoot
// for.
thismax = a->cdigit;
}
if ( thismax < b->cdigit )
{
// b has more digits than precision specified, bump up digits to shoot
// b has more digits than precision specified, bump up digits to shoot
// for.
thismax = b->cdigit;
}
@@ -317,7 +317,7 @@ void _divnumx( PNUMBER *pa, PNUMBER b, int32_t precision)
digit *= 2;
}
if ( lessnum( rem, tmp ) )
{
{
// too far, back up...
destroynum( tmp );
digit /= 2;
@@ -326,7 +326,7 @@ void _divnumx( PNUMBER *pa, PNUMBER b, int32_t precision)
}
tmp->sign *= -1;
addnum( &rem, tmp, BASEX );
addnum( &rem, tmp, BASEX );
destroynum( tmp );
destroynum( lasttmp );
*ptrc |= digit;
@@ -341,7 +341,7 @@ void _divnumx( PNUMBER *pa, PNUMBER b, int32_t precision)
}
if ( !cdigits )
{
{
// A zero, make sure no weird exponents creep in
c->exp = 0;
c->cdigit = 1;
@@ -350,7 +350,7 @@ void _divnumx( PNUMBER *pa, PNUMBER b, int32_t precision)
{
c->cdigit = cdigits;
c->exp -= cdigits;
// prevent different kinds of zeros, by stripping leading duplicate
// prevent different kinds of zeros, by stripping leading duplicate
// zeros. digits are in order of increasing significance.
while ( c->cdigit > 1 && c->mant[c->cdigit-1] == 0 )
{

View File

@@ -801,7 +801,7 @@ PNUMBER longtonum( long inlong, uint32_t radix)
// RETURN: number
//
// DESCRIPTION: Returns a number representation in the
// base requested of the unsigned long value passed in. Being unsigned number it has no
// base requested of the unsigned long value passed in. Being unsigned number it has no
// negative number and takes the full range of unsigned number
//
//-----------------------------------------------------------------------------
@@ -817,7 +817,7 @@ PNUMBER Ulongtonum(unsigned long inlong, uint32_t radix)
pnumret->cdigit = 0;
pnumret->exp = 0;
pnumret->sign = 1;
do {
*pmant++ = (MANTTYPE)(inlong % radix);
inlong /= radix;

View File

@@ -46,8 +46,8 @@ void _exprat( PRAT *px, int32_t precision)
{
CREATETAYLOR();
addnum(&(pret->pp),num_one, BASEX);
addnum(&(pret->pq),num_one, BASEX);
addnum(&(pret->pp),num_one, BASEX);
addnum(&(pret->pq),num_one, BASEX);
DUPRAT(thisterm,pret);
n2=longtonum(0L, BASEX);
@@ -81,7 +81,7 @@ void exprat( PRAT *px, uint32_t radix, int32_t precision)
ratpowlong( &pwr, intpwr, precision);
subrat(px, pint, precision);
// It just so happens to be an integral power of e.
if ( rat_gt( *px, rat_negsmallest, precision) && rat_lt( *px, rat_smallest, precision) )
{
@@ -131,7 +131,7 @@ void _lograt( PRAT *px, int32_t precision)
CREATETAYLOR();
createrat(thisterm);
// sub one from x
(*px)->pq->sign *= -1;
addnum(&((*px)->pp),(*px)->pq, BASEX);
@@ -158,14 +158,14 @@ void lograt( PRAT *px, int32_t precision)
bool fneglog;
PRAT pwr = nullptr; // pwr is the large scaling factor.
PRAT offset = nullptr; // offset is the incremental scaling factor.
// Check for someone taking the log of zero or a negative number.
if ( rat_le( *px, rat_zero, precision) )
{
throw( CALC_E_DOMAIN );
}
// Get number > 1, for scaling
fneglog = rat_lt( *px, rat_one, precision);
if ( fneglog )
@@ -176,12 +176,12 @@ void lograt( PRAT *px, int32_t precision)
(*px)->pp = (*px)->pq;
(*px)->pq = pnumtemp;
}
// Scale the number within BASEX factor of 1, for the large scale.
// log(x*2^(BASEXPWR*k)) = BASEXPWR*k*log(2)+log(x)
if ( LOGRAT2(*px) > 1 )
{
// Take advantage of px's base BASEX to scale quickly down to
// Take advantage of px's base BASEX to scale quickly down to
// a reasonable range.
long intpwr;
intpwr=LOGRAT2(*px)-1;
@@ -206,17 +206,17 @@ void lograt( PRAT *px, int32_t precision)
}
_lograt(px, precision);
// Add the large and small scaling factors, take into account
// small scaling was done in e_to_one_half chunks.
divrat(&offset, rat_two, precision);
addrat(&pwr, offset, precision);
// And add the resulting scaling factor to the answer.
addrat(px, pwr, precision);
trimit(px, precision);
// If number started out < 1 rescale answer to negative.
if ( fneglog )
{
@@ -224,9 +224,9 @@ void lograt( PRAT *px, int32_t precision)
}
destroyrat(offset);
destroyrat(pwr);
destroyrat(pwr);
}
void log10rat( PRAT *px, int32_t precision)
{
@@ -235,7 +235,7 @@ void log10rat( PRAT *px, int32_t precision)
}
//
// return if the given x is even number. The assumption here is its denominator is 1 and we are testing the numerator is
// return if the given x is even number. The assumption here is its denominator is 1 and we are testing the numerator is
// even or not
bool IsEven(PRAT x, uint32_t radix, int32_t precision)
{
@@ -318,7 +318,7 @@ void powratNumeratorDenominator(PRAT *px, PRAT y, uint32_t radix, int32_t precis
// 1. Initialize result.
PRAT pxPow = nullptr;
DUPRAT(pxPow, *px);
// 2. Calculate pxPow = px ^ yNumerator
// if yNumerator is not 1
if (!rat_equ(yNumerator, rat_one, precision))
@@ -341,7 +341,7 @@ void powratNumeratorDenominator(PRAT *px, PRAT y, uint32_t radix, int32_t precis
PRAT originalResult = nullptr;
DUPRAT(originalResult, pxPow);
powratcomp(&originalResult, oneoveryDenom, radix, precision);
// ##################################
// Round the originalResult to roundedResult
// ##################################
@@ -375,7 +375,7 @@ void powratNumeratorDenominator(PRAT *px, PRAT y, uint32_t radix, int32_t precis
else
{
DUPRAT(*px, originalResult);
}
}
destroyrat(oneoveryDenom);
destroyrat(originalResult);
@@ -429,7 +429,7 @@ void powratcomp(PRAT *px, PRAT y, uint32_t radix, int32_t precision)
sign = 1;
}
}
else
else
{
PRAT pxint= nullptr;
DUPRAT(pxint,*px);
@@ -491,7 +491,7 @@ void powratcomp(PRAT *px, PRAT y, uint32_t radix, int32_t precision)
PRAT pNumerator = nullptr;
PRAT pDenominator = nullptr;
bool fBadExponent = false;
// Get the numbers in arbitrary precision rational number format
DUPRAT(pNumerator, rat_zero); // pNumerator->pq is 1 one
DUPRAT(pDenominator, rat_zero); // pDenominator->pq is 1 one
@@ -516,7 +516,7 @@ void powratcomp(PRAT *px, PRAT y, uint32_t radix, int32_t precision)
}
destroyrat(pNumerator);
destroyrat(pDenominator);
if (fBadExponent)
{
throw( CALC_E_DOMAIN );

View File

@@ -73,17 +73,17 @@ void _gamma( PRAT *pn, uint32_t radix, int32_t precision)
PRAT ratprec = nullptr;
PRAT ratRadix = nullptr;
long oldprec;
// Set up constants and initial conditions
oldprec = precision;
ratprec = longtorat( oldprec );
// Find the best 'A' for convergence to the required precision.
a=longtorat( radix );
lograt(&a, precision);
mulrat(&a, ratprec, precision);
// Really is -ln(n)+1, but -ln(n) will be < 1
// Really is -ln(n)+1, but -ln(n) will be < 1
// if we scale n between 0.5 and 1.5
addrat(&a, rat_two, precision);
DUPRAT(tmp,a);
@@ -91,9 +91,9 @@ void _gamma( PRAT *pn, uint32_t radix, int32_t precision)
mulrat(&tmp, *pn, precision);
addrat(&a, tmp, precision);
addrat(&a, rat_one, precision);
// Calculate the necessary bump in precision and up the precision.
// The following code is equivalent to
// The following code is equivalent to
// precision += ln(exp(a)*pow(a,n+1.5))-ln(radix));
DUPRAT(tmp,*pn);
one_pt_five=longtorat( 3L );
@@ -110,7 +110,7 @@ void _gamma( PRAT *pn, uint32_t radix, int32_t precision)
lograt( &tmp, precision);
subrat( &term, tmp, precision);
precision += rattolong( term, radix, precision);
// Set up initial terms for series, refer to series in above comment block.
DUPRAT(factorial,rat_one); // Start factorial out with one
count = longtonum( 0L, BASEX );
@@ -120,7 +120,7 @@ void _gamma( PRAT *pn, uint32_t radix, int32_t precision)
// a2=a^2
DUPRAT(a2,a);
mulrat(&a2, a, precision);
// sum=(1/n)-(a/(n+1))
DUPRAT(sum,rat_one);
divrat(&sum, *pn, precision);
@@ -136,14 +136,14 @@ void _gamma( PRAT *pn, uint32_t radix, int32_t precision)
divrat(&err, ratRadix, precision);
// Just get something not tiny in term
DUPRAT(term, rat_two );
DUPRAT(term, rat_two );
// Loop until precision is reached, or asked to halt.
while ( !zerrat( term ) && rat_gt( term, err, precision) )
{
addrat(pn, rat_two, precision);
// WARNING: mixing numbers and rationals here.
// WARNING: mixing numbers and rationals here.
// for speed and efficiency.
INC(count);
mulnumx(&(factorial->pp),count);
@@ -166,15 +166,15 @@ void _gamma( PRAT *pn, uint32_t radix, int32_t precision)
DUPRAT(term,rat_one);
divrat( &term, *pn, precision);
subrat( &term, tmp, precision);
divrat (&term, factorial, precision);
addrat( &sum, term, precision);
ABSRAT(term);
}
// Multiply by factor.
mulrat( &sum, mpy, precision);
// And cleanup
precision = oldprec;
destroyrat(ratprec);
@@ -199,13 +199,13 @@ void factrat( PRAT *px, uint32_t radix, int32_t precision)
PRAT fact = nullptr;
PRAT frac = nullptr;
PRAT neg_rat_one = nullptr;
if ( rat_gt( *px, rat_max_fact, precision) || rat_lt( *px, rat_min_fact, precision) )
{
// Don't attempt factorial of anything too large or small.
throw CALC_E_OVERFLOW;
}
DUPRAT(fact,rat_one);
DUPRAT(neg_rat_one,rat_one);
@@ -226,7 +226,7 @@ void factrat( PRAT *px, uint32_t radix, int32_t precision)
mulrat( &fact, *px, precision);
subrat( px, rat_one, precision);
}
// Added to make numbers 'close enough' to integers use integer factorial.
if ( LOGRATRADIX(*px) <= -precision)
{

View File

@@ -69,13 +69,13 @@ void _asinrat( PRAT *px, int32_t precision)
{
CREATETAYLOR();
DUPRAT(pret,*px);
DUPRAT(pret,*px);
DUPRAT(thisterm,*px);
DUPNUM(n2,num_one);
do
{
NEXTTERM(xx,MULNUM(n2) MULNUM(n2)
NEXTTERM(xx,MULNUM(n2) MULNUM(n2)
INC(n2) DIVNUM(n2) INC(n2) DIVNUM(n2), precision);
}
while ( !SMALL_ENOUGH_RAT( thisterm, precision) );
@@ -100,7 +100,7 @@ void asinrat( PRAT *px, uint32_t radix, int32_t precision)
(*px)->pp->sign = 1;
(*px)->pq->sign = 1;
// Avoid the really bad part of the asin curve near +/-1.
DUPRAT(phack,*px);
subrat(&phack, rat_one, precision);
@@ -185,15 +185,15 @@ void _acosrat( PRAT *px, int32_t precision)
{
CREATETAYLOR();
createrat(thisterm);
createrat(thisterm);
thisterm->pp=longtonum( 1L, BASEX );
thisterm->pq=longtonum( 1L, BASEX );
thisterm->pq=longtonum( 1L, BASEX );
DUPNUM(n2,num_one);
do
{
NEXTTERM(xx,MULNUM(n2) MULNUM(n2)
NEXTTERM(xx,MULNUM(n2) MULNUM(n2)
INC(n2) DIVNUM(n2) INC(n2) DIVNUM(n2), precision);
}
while ( !SMALL_ENOUGH_RAT( thisterm, precision) );
@@ -210,7 +210,7 @@ void acosrat( PRAT *px, uint32_t radix, int32_t precision)
(*px)->pp->sign = 1;
(*px)->pq->sign = 1;
if ( rat_equ( *px, rat_one, precision) )
{
if ( sgn == -1 )
@@ -274,7 +274,7 @@ void _atanrat( PRAT *px, int32_t precision)
{
CREATETAYLOR();
DUPRAT(pret,*px);
DUPRAT(pret,*px);
DUPRAT(thisterm,*px);
DUPNUM(n2,num_one);
@@ -298,7 +298,7 @@ void atanrat( PRAT *px, uint32_t radix, int32_t precision)
(*px)->pp->sign = 1;
(*px)->pq->sign = 1;
if ( rat_gt( (*px), pt_eight_five, precision) )
{
if ( rat_gt( (*px), rat_two, precision) )
@@ -314,7 +314,7 @@ void atanrat( PRAT *px, uint32_t radix, int32_t precision)
subrat(px, tmpx, precision);
destroyrat( tmpx );
}
else
else
{
(*px)->pp->sign = sgn;
DUPRAT(tmpx,*px);

View File

@@ -60,7 +60,7 @@ void asinhrat( PRAT *px, uint32_t radix, int32_t precision)
if ( rat_gt( *px, pt_eight_five, precision) || rat_lt( *px, neg_pt_eight_five, precision) )
{
PRAT ptmp = nullptr;
DUPRAT(ptmp,(*px));
DUPRAT(ptmp,(*px));
mulrat(&ptmp, *px, precision);
addrat(&ptmp, rat_one, precision);
rootrat(&ptmp, rat_two, radix, precision);
@@ -73,14 +73,14 @@ void asinhrat( PRAT *px, uint32_t radix, int32_t precision)
CREATETAYLOR();
xx->pp->sign *= -1;
DUPRAT(pret,(*px));
DUPRAT(pret,(*px));
DUPRAT(thisterm,(*px));
DUPNUM(n2,num_one);
do
{
NEXTTERM(xx,MULNUM(n2) MULNUM(n2)
NEXTTERM(xx,MULNUM(n2) MULNUM(n2)
INC(n2) DIVNUM(n2) INC(n2) DIVNUM(n2), precision);
}
while ( !SMALL_ENOUGH_RAT( thisterm, precision) );
@@ -99,7 +99,7 @@ void asinhrat( PRAT *px, uint32_t radix, int32_t precision)
// hyperbolic cose of
// RETURN: acosh of x in PRAT form.
//
// EXPLANATION: This uses
// EXPLANATION: This uses
//
// acosh(x)=ln(x+sqrt(x^2-1))
//
@@ -117,7 +117,7 @@ void acoshrat( PRAT *px, uint32_t radix, int32_t precision)
else
{
PRAT ptmp = nullptr;
DUPRAT(ptmp,(*px));
DUPRAT(ptmp,(*px));
mulrat(&ptmp, *px, precision);
subrat(&ptmp, rat_one, precision);
rootrat(&ptmp,rat_two, radix, precision);
@@ -148,7 +148,7 @@ void atanhrat( PRAT *px, int32_t precision)
{
PRAT ptmp = nullptr;
DUPRAT(ptmp,(*px));
DUPRAT(ptmp,(*px));
subrat(&ptmp, rat_one, precision);
addrat(px, rat_one, precision);
divrat(px, ptmp, precision);

View File

@@ -49,7 +49,7 @@ void rshrat( PRAT *pa, PRAT b, uint32_t radix, int32_t precision)
intrat(pa, radix, precision);
if ( !zernum( (*pa)->pp ) )
{
{
// If input is zero we're done.
if ( rat_lt( b, rat_min_exp, precision) )
{
@@ -155,11 +155,11 @@ void boolnum( PNUMBER *pa, PNUMBER b, int func )
pchc = c->mant;
for ( ;cdigits > 0; cdigits--, mexp++ )
{
da = ( ( ( mexp >= a->exp ) && ( cdigits + a->exp - c->exp >
(c->cdigit - a->cdigit) ) ) ?
da = ( ( ( mexp >= a->exp ) && ( cdigits + a->exp - c->exp >
(c->cdigit - a->cdigit) ) ) ?
*pcha++ : 0 );
db = ( ( ( mexp >= b->exp ) && ( cdigits + b->exp - c->exp >
(c->cdigit - b->cdigit) ) ) ?
db = ( ( ( mexp >= b->exp ) && ( cdigits + b->exp - c->exp >
(c->cdigit - b->cdigit) ) ) ?
*pchb++ : 0 );
switch ( func )
{
@@ -205,15 +205,14 @@ void modrat( PRAT *pa, PRAT b )
throw CALC_E_INDEFINITE;
}
DUPRAT(tmp,b);
mulnumx( &((*pa)->pp), tmp->pq );
mulnumx( &(tmp->pp), (*pa)->pq );
remnum( &((*pa)->pp), tmp->pp, BASEX );
mulnumx( &((*pa)->pq), tmp->pq );
//Get *pa back in the integer over integer form.
// Get *pa back in the integer over integer form.
RENORMALIZE(*pa);
destroyrat( tmp );
}

View File

@@ -2,20 +2,20 @@
// Licensed under the MIT License.
//-----------------------------------------------------------------------------
// Package Title ratpak
// File num.c
// Copyright (C) 1995-97 Microsoft
// Date 01-16-95
//
//
// Description
//
// Contains number routines for add, mul, div, rem and other support
// and longs.
//
// Special Information
//
//
// Package Title ratpak
// File num.c
// Copyright (C) 1995-97 Microsoft
// Date 01-16-95
//
//
// Description
//
// Contains number routines for add, mul, div, rem and other support
// and longs.
//
// Special Information
//
//
//-----------------------------------------------------------------------------
#include "pch.h"
#include "ratpak.h"
@@ -76,8 +76,8 @@ void _addnum( PNUMBER *pa, PNUMBER b, uint32_t radix)
long fcomplb = 0; // fcomplb is a flag to signal b is negative.
a=*pa;
// Calculate the overlap of the numbers after alignment, this includes
// necessary padding 0's
cdigits = max( a->cdigit+a->exp, b->cdigit+b->exp ) -
@@ -90,7 +90,7 @@ void _addnum( PNUMBER *pa, PNUMBER b, uint32_t radix)
pcha = a->mant;
pchb = b->mant;
pchc = c->mant;
// Figure out the sign of the numbers
if ( a->sign != b->sign )
{
@@ -98,21 +98,21 @@ void _addnum( PNUMBER *pa, PNUMBER b, uint32_t radix)
fcompla = ( a->sign == -1 );
fcomplb = ( b->sign == -1 );
}
// Loop over all the digits, real and 0 padded. Here we know a and b are
// aligned
// aligned
for ( ;cdigits > 0; cdigits--, mexp++ )
{
// Get digit from a, taking padding into account.
da = ( ( ( mexp >= a->exp ) && ( cdigits + a->exp - c->exp >
(c->cdigit - a->cdigit) ) ) ?
da = ( ( ( mexp >= a->exp ) && ( cdigits + a->exp - c->exp >
(c->cdigit - a->cdigit) ) ) ?
*pcha++ : 0 );
// Get digit from b, taking padding into account.
db = ( ( ( mexp >= b->exp ) && ( cdigits + b->exp - c->exp >
(c->cdigit - b->cdigit) ) ) ?
db = ( ( ( mexp >= b->exp ) && ( cdigits + b->exp - c->exp >
(c->cdigit - b->cdigit) ) ) ?
*pchb++ : 0 );
// Handle complementing for a and b digit. Might be a better way, but
// haven't found it yet.
if ( fcompla )
@@ -123,20 +123,20 @@ void _addnum( PNUMBER *pa, PNUMBER b, uint32_t radix)
{
db = (MANTTYPE)(radix) - 1 - db;
}
// Update carry as necessary
cy = da + db + cy;
*pchc++ = (MANTTYPE)(cy % (MANTTYPE)radix);
cy /= (MANTTYPE)radix;
}
// Handle carry from last sum as extra digit
if ( cy && !(fcompla || fcomplb) )
{
*pchc++ = cy;
c->cdigit++;
}
// Compute sign of result
if ( !(fcompla || fcomplb) )
{
@@ -150,14 +150,14 @@ void _addnum( PNUMBER *pa, PNUMBER b, uint32_t radix)
}
else
{
// In this particular case an overflow or underflow has occurred
// and all the digits need to be complemented, at one time an
// attempt to handle this above was made, it turned out to be much
// In this particular case an overflow or underflow has occurred
// and all the digits need to be complemented, at one time an
// attempt to handle this above was made, it turned out to be much
// slower on average.
c->sign = -1;
cy = 1;
for ( ( cdigits = c->cdigit ), (pchc = c->mant);
cdigits > 0;
cdigits > 0;
cdigits-- )
{
cy = (MANTTYPE)radix - (MANTTYPE)1 - *pchc + cy;
@@ -166,7 +166,7 @@ void _addnum( PNUMBER *pa, PNUMBER b, uint32_t radix)
}
}
}
// Remove leading zeros, remember digits are in order of
// increasing significance. i.e. 100 would be 0,0,1
while ( c->cdigit > 1 && *(--pchc) == 0 )
@@ -231,7 +231,7 @@ void _mulnum( PNUMBER *pa, PNUMBER b, uint32_t radix)
MANTTYPE da = 0; // da is the digit from the fist number.
TWO_MANTTYPE cy = 0; // cy is the carry resulting from the addition of
// a multiplied row into the result.
TWO_MANTTYPE mcy = 0; // mcy is the resultant from a single
TWO_MANTTYPE mcy = 0; // mcy is the resultant from a single
// multiply, AND the carry of that multiply.
long icdigit = 0; // Index of digit being calculated in final result.
@@ -249,8 +249,8 @@ void _mulnum( PNUMBER *pa, PNUMBER b, uint32_t radix)
{
da = *pcha++;
pchb = b->mant;
// Shift pchc, and pchcoffset, one for each digit
// Shift pchc, and pchcoffset, one for each digit
pchc = pchcoffset++;
for ( ibdigit = b->cdigit; ibdigit > 0; ibdigit-- )
@@ -268,23 +268,23 @@ void _mulnum( PNUMBER *pa, PNUMBER b, uint32_t radix)
// If result is nonzero, or while result of carry is nonzero...
while ( mcy || cy )
{
// update carry from addition(s) and multiply.
cy += (TWO_MANTTYPE)pchc[icdigit]+(mcy%(TWO_MANTTYPE)radix);
// update result digit from
// update result digit from
pchc[icdigit++]=(MANTTYPE)(cy%(TWO_MANTTYPE)radix);
// update carries from
mcy /= (TWO_MANTTYPE)radix;
cy /= (TWO_MANTTYPE)radix;
}
pchb++;
pchc++;
}
}
// prevent different kinds of zeros, by stripping leading duplicate zeros.
// digits are in order of increasing significance.
while ( c->cdigit > 1 && c->mant[c->cdigit-1] == 0 )
@@ -317,7 +317,7 @@ void remnum( PNUMBER *pa, PNUMBER b, uint32_t radix)
{
PNUMBER tmp = nullptr; // tmp is the working remainder.
PNUMBER lasttmp = nullptr; // lasttmp is the last remainder which worked.
// Once *pa is less than b, *pa is the remainder.
while ( !lessnum( *pa, b ) )
{
@@ -336,20 +336,20 @@ void remnum( PNUMBER *pa, PNUMBER b, uint32_t radix)
destroynum( lasttmp );
lasttmp=longtonum( 0, radix);
while ( lessnum( tmp, *pa ) )
while ( lessnum( tmp, *pa ) )
{
DUPNUM( lasttmp, tmp );
addnum( &tmp, tmp, radix);
}
if ( lessnum( *pa, tmp ) )
{
{
// too far, back up...
destroynum( tmp );
tmp=lasttmp;
lasttmp= nullptr;
}
// Subtract the working remainder from the remainder holder.
tmp->sign = -1*(*pa)->sign;
addnum( pa, tmp, radix);
@@ -357,7 +357,7 @@ void remnum( PNUMBER *pa, PNUMBER b, uint32_t radix)
destroynum( tmp );
destroynum( lasttmp );
}
}
}
@@ -381,7 +381,7 @@ void __inline divnum( PNUMBER *pa, PNUMBER b, uint32_t radix, int32_t precision)
{
if ( b->cdigit > 1 || b->mant[0] != 1 || b->exp != 0 )
{
{
// b is not one
_divnum( pa, b, radix, precision);
}
@@ -418,7 +418,7 @@ void _divnum( PNUMBER *pa, PNUMBER b, uint32_t radix, int32_t precision)
tmp->sign = a->sign;
rem->exp = b->cdigit + b->exp - rem->cdigit;
// Build a table of multiplications of the divisor, this is quicker for
// Build a table of multiplications of the divisor, this is quicker for
// more than radix 'digits'
list<PNUMBER> numberList{ longtonum(0L, radix) };
for (unsigned long i = 1; i < radix; i++)
@@ -535,21 +535,21 @@ bool equnum( PNUMBER a, PNUMBER b )
pb += b->cdigit - 1;
cdigits = max( a->cdigit, b->cdigit );
ccdigits = cdigits;
// Loop over all digits until we run out of digits or there is a
// difference in the digits.
for ( ;cdigits > 0; cdigits-- )
{
da = ( (cdigits > (ccdigits - a->cdigit) ) ?
da = ( (cdigits > (ccdigits - a->cdigit) ) ?
*pa-- : 0 );
db = ( (cdigits > (ccdigits - b->cdigit) ) ?
db = ( (cdigits > (ccdigits - b->cdigit) ) ?
*pb-- : 0 );
if ( da != db )
{
return false;
}
}
// In this case, they are equal.
return true;
}
@@ -604,9 +604,9 @@ bool lessnum( PNUMBER a, PNUMBER b )
ccdigits = cdigits;
for ( ;cdigits > 0; cdigits-- )
{
da = ( (cdigits > (ccdigits - a->cdigit) ) ?
da = ( (cdigits > (ccdigits - a->cdigit) ) ?
*pa-- : 0 );
db = ( (cdigits > (ccdigits - b->cdigit) ) ?
db = ( (cdigits > (ccdigits - b->cdigit) ) ?
*pb-- : 0 );
diff = da-db;
if ( diff )
@@ -639,8 +639,8 @@ bool zernum( PNUMBER a )
MANTTYPE *pcha;
length = a->cdigit;
pcha = a->mant;
// loop over all the digits until you find a nonzero or until you run
// loop over all the digits until you find a nonzero or until you run
// out of digits
while ( length-- > 0 )
{

View File

@@ -56,7 +56,7 @@ void gcdrat( PRAT *pa, int32_t precision)
destroynum( pgcd );
*pa=a;
RENORMALIZE(*pa);
RENORMALIZE(*pa);
}
//-----------------------------------------------------------------------------
@@ -82,7 +82,7 @@ void fracrat( PRAT *pa , uint32_t radix, int32_t precision)
remnum( &((*pa)->pp), (*pa)->pq, BASEX );
//Get *pa back in the integer over integer form.
// Get *pa back in the integer over integer form.
RENORMALIZE(*pa);
}
@@ -100,7 +100,7 @@ void fracrat( PRAT *pa , uint32_t radix, int32_t precision)
//-----------------------------------------------------------------------------
void mulrat( PRAT *pa, PRAT b, int32_t precision)
{
// Only do the multiply if it isn't zero.
if ( !zernum( (*pa)->pp ) )
@@ -170,7 +170,7 @@ void divrat( PRAT *pa, PRAT b, int32_t precision)
#ifdef DIVGCD
gcdrat( pa );
#endif
#endif
}
@@ -215,13 +215,13 @@ void addrat( PRAT *pa, PRAT b, int32_t precision)
if ( equnum( (*pa)->pq, b->pq ) )
{
// Very special case, q's match.,
// Very special case, q's match.,
// make sure signs are involved in the calculation
// we have to do this since the optimization here is only
// we have to do this since the optimization here is only
// working with the top half of the rationals.
(*pa)->pp->sign *= (*pa)->pq->sign;
(*pa)->pp->sign *= (*pa)->pq->sign;
(*pa)->pq->sign = 1;
b->pp->sign *= b->pq->sign;
b->pp->sign *= b->pq->sign;
b->pq->sign = 1;
addnum( &((*pa)->pp), b->pp, BASEX );
}
@@ -236,15 +236,15 @@ void addrat( PRAT *pa, PRAT b, int32_t precision)
destroynum( (*pa)->pq );
(*pa)->pq = bot;
trimit(pa, precision);
// Get rid of negative zeros here.
(*pa)->pp->sign *= (*pa)->pq->sign;
(*pa)->pp->sign *= (*pa)->pq->sign;
(*pa)->pq->sign = 1;
}
#ifdef ADDGCD
gcdrat( pa );
#endif
#endif
}
@@ -264,7 +264,7 @@ void addrat( PRAT *pa, PRAT b, int32_t precision)
//-----------------------------------------------------------------------------
void rootrat( PRAT *py, PRAT n, uint32_t radix, int32_t precision)
{
{
// Initialize 1/n
PRAT oneovern= nullptr;
DUPRAT(oneovern,rat_one);

View File

@@ -58,7 +58,7 @@ static int cbitsofprecision = RATIO_FOR_DECIMAL * DECIMAL * CALC_DECIMAL_DIGITS_
#endif
bool g_ftrueinfinite = false; // Set to true if you don't want
bool g_ftrueinfinite = false; // Set to true if you don't want
// chopping internally
// precision used internally
@@ -119,8 +119,8 @@ PRAT rat_max_long= nullptr; // max signed long
void ChangeConstants(uint32_t radix, int32_t precision)
{
// ratio is set to the number of digits in the current radix, you can get
// in the internal BASEX radix, this is important for length calculations
// ratio is set to the number of digits in the current radix, you can get
// in the internal BASEX radix, this is important for length calculations
// in translating from radix to BASEX and back.
uint64_t limit = static_cast<uint64_t>(BASEX) / static_cast<uint64_t>(radix);
@@ -213,7 +213,7 @@ void ChangeConstants(uint32_t radix, int32_t precision)
cbitsofprecision = g_ratio * radix * precision;
// Apparently when dividing 180 by pi, another (internal) digit of
// Apparently when dividing 180 by pi, another (internal) digit of
// precision is needed.
long extraPrecision = precision + g_ratio;
DUPRAT(pi, rat_half);
@@ -348,7 +348,7 @@ bool rat_ge( PRAT a, PRAT b, int32_t precision)
b->pp->sign *= -1;
addrat( &rattmp, b, precision);
b->pp->sign *= -1;
bool bret = ( zernum( rattmp->pp ) ||
bool bret = ( zernum( rattmp->pp ) ||
rattmp->pp->sign * rattmp->pq->sign == 1 );
destroyrat( rattmp );
return( bret );
@@ -472,10 +472,10 @@ void scale( PRAT *px, PRAT scalefact, uint32_t radix, int32_t precision )
{
PRAT pret = nullptr;
DUPRAT(pret,*px);
// Logscale is a quick way to tell how much extra precision is needed for
// Logscale is a quick way to tell how much extra precision is needed for
// scaling by scalefact.
long logscale = g_ratio * ( (pret->pp->cdigit+pret->pp->exp) -
long logscale = g_ratio * ( (pret->pp->cdigit+pret->pp->exp) -
(pret->pq->cdigit+pret->pq->exp) );
if ( logscale > 0 )
{
@@ -508,9 +508,9 @@ void scale2pi( PRAT *px, uint32_t radix, int32_t precision )
PRAT my_two_pi = nullptr;
DUPRAT(pret,*px);
// Logscale is a quick way to tell how much extra precision is needed for
// Logscale is a quick way to tell how much extra precision is needed for
// scaling by 2 pi.
long logscale = g_ratio * ( (pret->pp->cdigit+pret->pp->exp) -
long logscale = g_ratio * ( (pret->pp->cdigit+pret->pp->exp) -
(pret->pq->cdigit+pret->pq->exp) );
if ( logscale > 0 )
{
@@ -663,16 +663,16 @@ void _readconstants( void )
// ARGUMENTS: PRAT *px, long precision
//
//
// DESCRIPTION: Chops off digits from rational numbers to avoid time
// explosions in calculations of functions using series.
// It can be shown that it is enough to only keep the first n digits
// of the largest of p or q in the rational p over q form, and of course
// scale the smaller by the same number of digits. This will give you
// n-1 digits of accuracy. This dramatically speeds up calculations
// DESCRIPTION: Chops off digits from rational numbers to avoid time
// explosions in calculations of functions using series.
// It can be shown that it is enough to only keep the first n digits
// of the largest of p or q in the rational p over q form, and of course
// scale the smaller by the same number of digits. This will give you
// n-1 digits of accuracy. This dramatically speeds up calculations
// involving hundreds of digits or more.
// The last part of this trim dealing with exponents never affects accuracy
//
// RETURN: none, modifies the pointed to PRAT
// RETURN: none, modifies the pointed to PRAT
//
//---------------------------------------------------------------------------
@@ -680,7 +680,7 @@ void trimit( PRAT *px, int32_t precision)
{
if ( !g_ftrueinfinite )
{
{
long trim;
PNUMBER pp=(*px)->pp;
PNUMBER pq=(*px)->pq;

View File

@@ -47,8 +47,8 @@ void scalerat( _Inout_ PRAT *pa, ANGLE_TYPE angletype, uint32_t radix, int32_t p
// EXPLANATION: This uses Taylor series
//
// n
// ___ 2j+1
// \ ] j X
// ___ 2j+1
// \ ] j X
// \ -1 * ---------
// / (2j+1)!
// /__]
@@ -73,7 +73,7 @@ void _sinrat( PRAT *px, int32_t precision)
{
CREATETAYLOR();
DUPRAT(pret,*px);
DUPRAT(pret,*px);
DUPRAT(thisterm,*px);
DUPNUM(n2,num_one);
@@ -84,11 +84,11 @@ void _sinrat( PRAT *px, int32_t precision)
} while ( !SMALL_ENOUGH_RAT( thisterm, precision) );
DESTROYTAYLOR();
// Since *px might be epsilon above 1 or below -1, due to TRIMIT we need
// Since *px might be epsilon above 1 or below -1, due to TRIMIT we need
// this trick here.
inbetween(px, rat_one, precision);
// Since *px might be epsilon near zero we must set it to zero.
if ( rat_le(*px, rat_smallest, precision) && rat_ge(*px, rat_negsmallest, precision) )
{
@@ -166,13 +166,13 @@ void _cosrat( PRAT *px, uint32_t radix, int32_t precision)
CREATETAYLOR();
destroynum(pret->pp);
destroynum(pret->pq);
destroynum(pret->pq);
pret->pp=longtonum( 1L, radix);
pret->pq=longtonum( 1L, radix);
DUPRAT(thisterm,pret)
n2=longtonum(0L, radix);
xx->pp->sign *= -1;
@@ -181,7 +181,7 @@ void _cosrat( PRAT *px, uint32_t radix, int32_t precision)
} while ( !SMALL_ENOUGH_RAT( thisterm, precision) );
DESTROYTAYLOR();
// Since *px might be epsilon above 1 or below -1, due to TRIMIT we need
// Since *px might be epsilon above 1 or below -1, due to TRIMIT we need
// this trick here.
inbetween(px, rat_one, precision);
// Since *px might be epsilon near zero we must set it to zero.

View File

@@ -80,7 +80,7 @@ void _sinhrat( PRAT *px, int32_t precision)
CREATETAYLOR();
DUPRAT(pret,*px);
DUPRAT(pret,*px);
DUPRAT(thisterm,pret);
DUPNUM(n2,num_one);
@@ -194,7 +194,7 @@ void coshrat( PRAT *px, uint32_t radix, int32_t precision)
{
_coshrat( px, radix, precision);
}
// Since *px might be epsilon below 1 due to TRIMIT
// Since *px might be epsilon below 1 due to TRIMIT
// we need this trick here.
if ( rat_lt(*px, rat_one, precision) )
{