calculator/src/CalcManager/Ratpack/support.cpp
Will 1113ff4b86 Updating comments per the C++ core guidelines and removing trailing whitespace (#194)
Fixed comments that were inconsistent with the style guidelines described in C++ core guidelines and the modern C++/WinRT language projections and removed trailing whitespace.

Inserted a space after the beginning of the comment so the text wasn't touching the // on all occurrences.

Removed all occurrences of trailing whitespace
2019-03-14 23:30:07 -07:00

719 lines
20 KiB
C++

// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
//----------------------------------------------------------------------------
// Package Title ratpak
// File support.c
// Copyright (C) 1995-96 Microsoft
// Date 10-21-96
//
//
// Description
//
// Contains support functions for rationals and numbers.
//
// Special Information
//
//
//
//----------------------------------------------------------------------------
#include "pch.h"
#include "ratpak.h"
using namespace std;
void _readconstants( void );
#if defined( GEN_CONST )
static int cbitsofprecision = 0;
#define READRAWRAT(v)
#define READRAWNUM(v)
#define DUMPRAWRAT(v) _dumprawrat(#v,v, wcout)
#define DUMPRAWNUM(v) fprintf( stderr, \
"// Autogenerated by _dumprawrat in support.cpp\n" ); \
fprintf( stderr, "inline const NUMBER init_" #v "= {\n" ); \
_dumprawnum(v, wcout); \
fprintf( stderr, "};\n" )
#else
#define DUMPRAWRAT(v)
#define DUMPRAWNUM(v)
#define READRAWRAT(v) createrat(v); DUPNUM((v)->pp,(&(init_p_##v))); \
DUPNUM((v)->pq,(&(init_q_##v)));
#define READRAWNUM(v) DUPNUM(v,(&(init_##v)))
#define INIT_AND_DUMP_RAW_NUM_IF_NULL(r, v) if (r == nullptr) { r = longtonum(v, BASEX); DUMPRAWNUM(v); }
#define INIT_AND_DUMP_RAW_RAT_IF_NULL(r, v) if (r == nullptr) { r = longtorat(v); DUMPRAWRAT(v); }
static constexpr int RATIO_FOR_DECIMAL = 9;
static constexpr int DECIMAL = 10;
static constexpr int CALC_DECIMAL_DIGITS_DEFAULT = 32;
static int cbitsofprecision = RATIO_FOR_DECIMAL * DECIMAL * CALC_DECIMAL_DIGITS_DEFAULT;
#include "ratconst.h"
#endif
bool g_ftrueinfinite = false; // Set to true if you don't want
// chopping internally
// precision used internally
PNUMBER num_one= nullptr;
PNUMBER num_two= nullptr;
PNUMBER num_five= nullptr;
PNUMBER num_six= nullptr;
PNUMBER num_ten= nullptr;
PRAT ln_ten= nullptr;
PRAT ln_two= nullptr;
PRAT rat_zero= nullptr;
PRAT rat_one= nullptr;
PRAT rat_neg_one= nullptr;
PRAT rat_two= nullptr;
PRAT rat_six= nullptr;
PRAT rat_half= nullptr;
PRAT rat_ten= nullptr;
PRAT pt_eight_five= nullptr;
PRAT pi= nullptr;
PRAT pi_over_two= nullptr;
PRAT two_pi= nullptr;
PRAT one_pt_five_pi= nullptr;
PRAT e_to_one_half= nullptr;
PRAT rat_exp= nullptr;
PRAT rad_to_deg= nullptr;
PRAT rad_to_grad= nullptr;
PRAT rat_qword= nullptr;
PRAT rat_dword= nullptr; // unsigned max ulong
PRAT rat_word= nullptr;
PRAT rat_byte= nullptr;
PRAT rat_360= nullptr;
PRAT rat_400= nullptr;
PRAT rat_180= nullptr;
PRAT rat_200= nullptr;
PRAT rat_nRadix= nullptr;
PRAT rat_smallest= nullptr;
PRAT rat_negsmallest= nullptr;
PRAT rat_max_exp= nullptr;
PRAT rat_min_exp= nullptr;
PRAT rat_max_fact = nullptr;
PRAT rat_min_fact = nullptr;
PRAT rat_min_long= nullptr; // min signed long
PRAT rat_max_long= nullptr; // max signed long
//----------------------------------------------------------------------------
//
// FUNCTION: ChangeConstants
//
// ARGUMENTS: base changing to, and precision to use.
//
// RETURN: None
//
// SIDE EFFECTS: sets a mess of constants.
//
//
//----------------------------------------------------------------------------
void ChangeConstants(uint32_t radix, int32_t precision)
{
// ratio is set to the number of digits in the current radix, you can get
// in the internal BASEX radix, this is important for length calculations
// in translating from radix to BASEX and back.
uint64_t limit = static_cast<uint64_t>(BASEX) / static_cast<uint64_t>(radix);
g_ratio = 0;
for (uint32_t digit = 1; digit < limit; digit *= radix )
{
g_ratio++;
}
g_ratio += !g_ratio;
destroyrat(rat_nRadix);
rat_nRadix=longtorat( radix );
// Check to see what we have to recalculate and what we don't
if (cbitsofprecision < (g_ratio * static_cast<int32_t>(radix) * precision))
{
g_ftrueinfinite = false;
INIT_AND_DUMP_RAW_NUM_IF_NULL(num_one, 1L);
INIT_AND_DUMP_RAW_NUM_IF_NULL(num_two, 2L);
INIT_AND_DUMP_RAW_NUM_IF_NULL(num_five, 5L);
INIT_AND_DUMP_RAW_NUM_IF_NULL(num_six, 6L);
INIT_AND_DUMP_RAW_NUM_IF_NULL(num_ten, 10L);
INIT_AND_DUMP_RAW_RAT_IF_NULL(rat_six, 6L);
INIT_AND_DUMP_RAW_RAT_IF_NULL(rat_two, 2L);
INIT_AND_DUMP_RAW_RAT_IF_NULL(rat_zero, 0L);
INIT_AND_DUMP_RAW_RAT_IF_NULL(rat_one, 1L);
INIT_AND_DUMP_RAW_RAT_IF_NULL(rat_neg_one, -1L);
INIT_AND_DUMP_RAW_RAT_IF_NULL(rat_ten, 10L);
INIT_AND_DUMP_RAW_RAT_IF_NULL(rat_word, 0xffff);
INIT_AND_DUMP_RAW_RAT_IF_NULL(rat_word, 0xff);
INIT_AND_DUMP_RAW_RAT_IF_NULL(rat_400, 400);
INIT_AND_DUMP_RAW_RAT_IF_NULL(rat_360, 360);
INIT_AND_DUMP_RAW_RAT_IF_NULL(rat_200, 200);
INIT_AND_DUMP_RAW_RAT_IF_NULL(rat_180, 180);
INIT_AND_DUMP_RAW_RAT_IF_NULL(rat_max_exp, 100000);
// 3248, is the max number for which calc is able to compute factorial, after that it is unable to compute due to overflow.
// Hence restricted factorial range as at most 3248.Beyond that calc will throw overflow error immediately.
INIT_AND_DUMP_RAW_RAT_IF_NULL(rat_max_fact, 3249);
// -1000, is the min number for which calc is able to compute factorial, after that it takes too long to compute.
INIT_AND_DUMP_RAW_RAT_IF_NULL(rat_min_fact, -1000);
DUPRAT(rat_smallest, rat_nRadix);
ratpowlong(&rat_smallest, -precision, precision);
DUPRAT(rat_negsmallest, rat_smallest);
rat_negsmallest->pp->sign = -1;
DUMPRAWRAT(rat_smallest);
DUMPRAWRAT(rat_negsmallest);
if (rat_half == nullptr)
{
createrat(rat_half);
DUPNUM(rat_half->pp, num_one);
DUPNUM(rat_half->pq, num_two);
DUMPRAWRAT(rat_half);
}
if (pt_eight_five == nullptr)
{
createrat(pt_eight_five);
pt_eight_five->pp = longtonum(85L, BASEX);
pt_eight_five->pq = longtonum(100L, BASEX);
DUMPRAWRAT(pt_eight_five);
}
DUPRAT(rat_qword, rat_two);
numpowlong(&(rat_qword->pp), 64, BASEX, precision);
subrat(&rat_qword, rat_one, precision);
DUMPRAWRAT(rat_qword);
DUPRAT(rat_dword, rat_two);
numpowlong(&(rat_dword->pp), 32, BASEX, precision);
subrat(&rat_dword, rat_one, precision);
DUMPRAWRAT(rat_dword);
DUPRAT(rat_max_long, rat_two);
numpowlong(&(rat_max_long->pp), 31, BASEX, precision);
DUPRAT(rat_min_long, rat_max_long);
subrat(&rat_max_long, rat_one, precision); // rat_max_long = 2^31 -1
DUMPRAWRAT(rat_max_long);
rat_min_long->pp->sign *= -1; // rat_min_long = -2^31
DUMPRAWRAT(rat_min_long);
DUPRAT(rat_min_exp, rat_max_exp);
rat_min_exp->pp->sign *= -1;
DUMPRAWRAT(rat_min_exp);
cbitsofprecision = g_ratio * radix * precision;
// Apparently when dividing 180 by pi, another (internal) digit of
// precision is needed.
long extraPrecision = precision + g_ratio;
DUPRAT(pi, rat_half);
asinrat(&pi, radix, extraPrecision);
mulrat(&pi, rat_six, extraPrecision);
DUMPRAWRAT(pi);
DUPRAT(two_pi, pi);
DUPRAT(pi_over_two, pi);
DUPRAT(one_pt_five_pi, pi);
addrat(&two_pi, pi, extraPrecision);
DUMPRAWRAT(two_pi);
divrat(&pi_over_two, rat_two, extraPrecision);
DUMPRAWRAT(pi_over_two);
addrat(&one_pt_five_pi, pi_over_two, extraPrecision);
DUMPRAWRAT(one_pt_five_pi);
DUPRAT(e_to_one_half, rat_half);
_exprat(&e_to_one_half, extraPrecision);
DUMPRAWRAT(e_to_one_half);
DUPRAT(rat_exp, rat_one);
_exprat(&rat_exp, extraPrecision);
DUMPRAWRAT(rat_exp);
// WARNING: remember lograt uses exponent constants calculated above...
DUPRAT(ln_ten, rat_ten);
lograt(&ln_ten, extraPrecision);
DUMPRAWRAT(ln_ten);
DUPRAT(ln_two, rat_two);
lograt(&ln_two, extraPrecision);
DUMPRAWRAT(ln_two);
destroyrat(rad_to_deg);
rad_to_deg = longtorat(180L);
divrat(&rad_to_deg, pi, extraPrecision);
DUMPRAWRAT(rad_to_deg);
destroyrat(rad_to_grad);
rad_to_grad = longtorat(200L);
divrat(&rad_to_grad, pi, extraPrecision);
DUMPRAWRAT(rad_to_grad);
}
else
{
_readconstants();
DUPRAT(rat_smallest, rat_nRadix);
ratpowlong(&rat_smallest, -precision, precision);
DUPRAT(rat_negsmallest, rat_smallest);
rat_negsmallest->pp->sign = -1;
}
}
//----------------------------------------------------------------------------
//
// FUNCTION: intrat
//
// ARGUMENTS: pointer to x PRAT representation of number
//
// RETURN: no return value x PRAT is smashed with integral number
//
//
//----------------------------------------------------------------------------
void intrat( PRAT *px, uint32_t radix, int32_t precision)
{
// Only do the intrat operation if number is nonzero.
// and only if the bottom part is not one.
if ( !zernum( (*px)->pp ) && !equnum( (*px)->pq, num_one ) )
{
flatrat(*px, radix, precision);
// Subtract the fractional part of the rational
PRAT pret = nullptr;
DUPRAT(pret,*px);
modrat( &pret, rat_one );
subrat( px, pret, precision);
destroyrat( pret );
// Simplify the value if possible to resolve rounding errors
flatrat(*px, radix, precision);
}
}
//---------------------------------------------------------------------------
//
// FUNCTION: rat_equ
//
// ARGUMENTS: PRAT a and PRAT b
//
// RETURN: true if equal false otherwise.
//
//
//---------------------------------------------------------------------------
bool rat_equ( PRAT a, PRAT b, int32_t precision)
{
PRAT rattmp= nullptr;
DUPRAT(rattmp,a);
rattmp->pp->sign *= -1;
addrat( &rattmp, b, precision);
bool bret = zernum( rattmp->pp );
destroyrat( rattmp );
return( bret );
}
//---------------------------------------------------------------------------
//
// FUNCTION: rat_ge
//
// ARGUMENTS: PRAT a, PRAT b and long precision
//
// RETURN: true if a is greater than or equal to b
//
//
//---------------------------------------------------------------------------
bool rat_ge( PRAT a, PRAT b, int32_t precision)
{
PRAT rattmp= nullptr;
DUPRAT(rattmp,a);
b->pp->sign *= -1;
addrat( &rattmp, b, precision);
b->pp->sign *= -1;
bool bret = ( zernum( rattmp->pp ) ||
rattmp->pp->sign * rattmp->pq->sign == 1 );
destroyrat( rattmp );
return( bret );
}
//---------------------------------------------------------------------------
//
// FUNCTION: rat_gt
//
// ARGUMENTS: PRAT a and PRAT b
//
// RETURN: true if a is greater than b
//
//
//---------------------------------------------------------------------------
bool rat_gt( PRAT a, PRAT b, int32_t precision)
{
PRAT rattmp= nullptr;
DUPRAT(rattmp,a);
b->pp->sign *= -1;
addrat( &rattmp, b, precision);
b->pp->sign *= -1;
bool bret = ( !zernum( rattmp->pp ) &&
rattmp->pp->sign * rattmp->pq->sign == 1 );
destroyrat( rattmp );
return( bret );
}
//---------------------------------------------------------------------------
//
// FUNCTION: rat_le
//
// ARGUMENTS: PRAT a, PRAT b and long precision
//
// RETURN: true if a is less than or equal to b
//
//
//---------------------------------------------------------------------------
bool rat_le( PRAT a, PRAT b, int32_t precision)
{
PRAT rattmp= nullptr;
DUPRAT(rattmp,a);
b->pp->sign *= -1;
addrat( &rattmp, b, precision);
b->pp->sign *= -1;
bool bret = ( zernum( rattmp->pp ) ||
rattmp->pp->sign * rattmp->pq->sign == -1 );
destroyrat( rattmp );
return( bret );
}
//---------------------------------------------------------------------------
//
// FUNCTION: rat_lt
//
// ARGUMENTS: PRAT a, PRAT b and long precision
//
// RETURN: true if a is less than b
//
//
//---------------------------------------------------------------------------
bool rat_lt( PRAT a, PRAT b, int32_t precision)
{
PRAT rattmp= nullptr;
DUPRAT(rattmp,a);
b->pp->sign *= -1;
addrat( &rattmp, b, precision);
b->pp->sign *= -1;
bool bret = ( !zernum( rattmp->pp ) &&
rattmp->pp->sign * rattmp->pq->sign == -1 );
destroyrat( rattmp );
return( bret );
}
//---------------------------------------------------------------------------
//
// FUNCTION: rat_neq
//
// ARGUMENTS: PRAT a and PRAT b
//
// RETURN: true if a is not equal to b
//
//
//---------------------------------------------------------------------------
bool rat_neq( PRAT a, PRAT b, int32_t precision)
{
PRAT rattmp= nullptr;
DUPRAT(rattmp,a);
rattmp->pp->sign *= -1;
addrat( &rattmp, b, precision);
bool bret = !( zernum( rattmp->pp ) );
destroyrat( rattmp );
return( bret );
}
//---------------------------------------------------------------------------
//
// function: scale
//
// ARGUMENTS: pointer to x PRAT representation of number, and scaling factor
//
// RETURN: no return, value x PRAT is smashed with a scaled number in the
// range of the scalefact.
//
//---------------------------------------------------------------------------
void scale( PRAT *px, PRAT scalefact, uint32_t radix, int32_t precision )
{
PRAT pret = nullptr;
DUPRAT(pret,*px);
// Logscale is a quick way to tell how much extra precision is needed for
// scaling by scalefact.
long logscale = g_ratio * ( (pret->pp->cdigit+pret->pp->exp) -
(pret->pq->cdigit+pret->pq->exp) );
if ( logscale > 0 )
{
precision += logscale;
}
divrat( &pret, scalefact, precision);
intrat(&pret, radix, precision);
mulrat( &pret, scalefact, precision);
pret->pp->sign *= -1;
addrat( px, pret, precision);
destroyrat( pret );
}
//---------------------------------------------------------------------------
//
// function: scale2pi
//
// ARGUMENTS: pointer to x PRAT representation of number
//
// RETURN: no return, value x PRAT is smashed with a scaled number in the
// range of 0..2pi
//
//---------------------------------------------------------------------------
void scale2pi( PRAT *px, uint32_t radix, int32_t precision )
{
PRAT pret = nullptr;
PRAT my_two_pi = nullptr;
DUPRAT(pret,*px);
// Logscale is a quick way to tell how much extra precision is needed for
// scaling by 2 pi.
long logscale = g_ratio * ( (pret->pp->cdigit+pret->pp->exp) -
(pret->pq->cdigit+pret->pq->exp) );
if ( logscale > 0 )
{
precision += logscale;
DUPRAT(my_two_pi,rat_half);
asinrat( &my_two_pi, radix, precision);
mulrat( &my_two_pi, rat_six, precision);
mulrat( &my_two_pi, rat_two, precision);
}
else
{
DUPRAT(my_two_pi,two_pi);
logscale = 0;
}
divrat( &pret, my_two_pi, precision);
intrat(&pret, radix, precision);
mulrat( &pret, my_two_pi, precision);
pret->pp->sign *= -1;
addrat( px, pret, precision);
destroyrat( my_two_pi );
destroyrat( pret );
}
//---------------------------------------------------------------------------
//
// FUNCTION: inbetween
//
// ARGUMENTS: PRAT *px, and PRAT range.
//
// RETURN: none, changes *px to -/+range, if px is outside -range..+range
//
//---------------------------------------------------------------------------
void inbetween( PRAT *px, PRAT range, int32_t precision)
{
if ( rat_gt(*px,range, precision) )
{
DUPRAT(*px,range);
}
else
{
range->pp->sign *= -1;
if ( rat_lt(*px, range, precision) )
{
DUPRAT(*px,range);
}
range->pp->sign *= -1;
}
}
//---------------------------------------------------------------------------
//
// FUNCTION: _dumprawrat
//
// ARGUMENTS: const wchar *name of variable, PRAT x, output stream out
//
// RETURN: none, prints the results of a dump of the internal structures
// of a PRAT, suitable for READRAWRAT to stderr.
//
//---------------------------------------------------------------------------
void _dumprawrat( const wchar_t *varname, PRAT rat, wostream& out)
{
_dumprawnum(varname, rat->pp, out );
_dumprawnum(varname, rat->pq, out );
}
//---------------------------------------------------------------------------
//
// FUNCTION: _dumprawnum
//
// ARGUMENTS: const wchar *name of variable, PNUMBER num, output stream out
//
// RETURN: none, prints the results of a dump of the internal structures
// of a PNUMBER, suitable for READRAWNUM to stderr.
//
//---------------------------------------------------------------------------
void _dumprawnum(const wchar_t *varname, PNUMBER num, wostream& out)
{
int i;
out << L"NUMBER " << varname << L" = {\n";
out << L"\t"<< num->sign << L",\n";
out << L"\t" << num->cdigit << L",\n";
out << L"\t" << num->exp << L",\n";
out << L"\t{ ";
for ( i = 0; i < num->cdigit; i++ )
{
out << L" "<< num->mant[i] << L",";
}
out << L"}\n";
out << L"};\n";
}
void _readconstants( void )
{
READRAWNUM(num_one);
READRAWNUM(num_two);
READRAWNUM(num_five);
READRAWNUM(num_six);
READRAWNUM(num_ten);
READRAWRAT(pt_eight_five);
READRAWRAT(rat_six);
READRAWRAT(rat_two);
READRAWRAT(rat_zero);
READRAWRAT(rat_one);
READRAWRAT(rat_neg_one);
READRAWRAT(rat_half);
READRAWRAT(rat_ten);
READRAWRAT(pi);
READRAWRAT(two_pi);
READRAWRAT(pi_over_two);
READRAWRAT(one_pt_five_pi);
READRAWRAT(e_to_one_half);
READRAWRAT(rat_exp);
READRAWRAT(ln_ten);
READRAWRAT(ln_two);
READRAWRAT(rad_to_deg);
READRAWRAT(rad_to_grad);
READRAWRAT(rat_qword);
READRAWRAT(rat_dword);
READRAWRAT(rat_word);
READRAWRAT(rat_byte);
READRAWRAT(rat_360);
READRAWRAT(rat_400);
READRAWRAT(rat_180);
READRAWRAT(rat_200);
READRAWRAT(rat_smallest);
READRAWRAT(rat_negsmallest);
READRAWRAT(rat_max_exp);
READRAWRAT(rat_min_exp);
READRAWRAT(rat_max_fact);
READRAWRAT(rat_min_fact);
READRAWRAT(rat_min_long);
READRAWRAT(rat_max_long);
}
//---------------------------------------------------------------------------
//
// FUNCTION: trimit
//
// ARGUMENTS: PRAT *px, long precision
//
//
// DESCRIPTION: Chops off digits from rational numbers to avoid time
// explosions in calculations of functions using series.
// It can be shown that it is enough to only keep the first n digits
// of the largest of p or q in the rational p over q form, and of course
// scale the smaller by the same number of digits. This will give you
// n-1 digits of accuracy. This dramatically speeds up calculations
// involving hundreds of digits or more.
// The last part of this trim dealing with exponents never affects accuracy
//
// RETURN: none, modifies the pointed to PRAT
//
//---------------------------------------------------------------------------
void trimit( PRAT *px, int32_t precision)
{
if ( !g_ftrueinfinite )
{
long trim;
PNUMBER pp=(*px)->pp;
PNUMBER pq=(*px)->pq;
trim = g_ratio * (min((pp->cdigit+pp->exp),(pq->cdigit+pq->exp))-1) - precision;
if ( trim > g_ratio )
{
trim /= g_ratio;
if ( trim <= pp->exp )
{
pp->exp -= trim;
}
else
{
memmove( pp->mant, &(pp->mant[trim-pp->exp]), sizeof(MANTTYPE)*(pp->cdigit-trim+pp->exp) );
pp->cdigit -= trim-pp->exp;
pp->exp = 0;
}
if ( trim <= pq->exp )
{
pq->exp -= trim;
}
else
{
memmove( pq->mant, &(pq->mant[trim-pq->exp]), sizeof(MANTTYPE)*(pq->cdigit-trim+pq->exp) );
pq->cdigit -= trim-pq->exp;
pq->exp = 0;
}
}
trim = min(pp->exp,pq->exp);
pp->exp -= trim;
pq->exp -= trim;
}
}