calculator/src/CalcManager/Ratpack/support.cpp
2020-03-16 15:52:48 -07:00

716 lines
22 KiB
C++

// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
//----------------------------------------------------------------------------
// Package Title ratpak
// File support.c
// Copyright (C) 1995-96 Microsoft
// Date 10-21-96
//
//
// Description
//
// Contains support functions for rationals and numbers.
//
// Special Information
//
//
//
//----------------------------------------------------------------------------
#include <string>
#include <cstring> // for memmove
#include <iostream> // for wostream
#include "ratpak.h"
using namespace std;
void _readconstants(void);
#if defined(GEN_CONST)
static int cbitsofprecision = 0;
#define READRAWRAT(v)
#define READRAWNUM(v)
#define DUMPRAWRAT(v) _dumprawrat(#v, v, wcout)
#define DUMPRAWNUM(v) \
fprintf(stderr, "// Autogenerated by _dumprawrat in support.cpp\n"); \
fprintf(stderr, "inline const NUMBER init_" #v "= {\n"); \
_dumprawnum(v, wcout); \
fprintf(stderr, "};\n")
#else
#define DUMPRAWRAT(v)
#define DUMPRAWNUM(v)
#define READRAWRAT(v) \
createrat(v); \
DUPNUM((v)->pp, (&(init_p_##v))); \
DUPNUM((v)->pq, (&(init_q_##v)));
#define READRAWNUM(v) DUPNUM(v, (&(init_##v)))
#define INIT_AND_DUMP_RAW_NUM_IF_NULL(r, v) \
if (r == nullptr) \
{ \
r = i32tonum(v, BASEX); \
DUMPRAWNUM(v); \
}
#define INIT_AND_DUMP_RAW_RAT_IF_NULL(r, v) \
if (r == nullptr) \
{ \
r = i32torat(v); \
DUMPRAWRAT(v); \
}
static constexpr int RATIO_FOR_DECIMAL = 9;
static constexpr int DECIMAL = 10;
static constexpr int CALC_DECIMAL_DIGITS_DEFAULT = 32;
static int cbitsofprecision = RATIO_FOR_DECIMAL * DECIMAL * CALC_DECIMAL_DIGITS_DEFAULT;
#include "ratconst.h"
#endif
bool g_ftrueinfinite = false; // Set to true if you don't want
// chopping internally
// precision used internally
PNUMBER num_one = nullptr;
PNUMBER num_two = nullptr;
PNUMBER num_five = nullptr;
PNUMBER num_six = nullptr;
PNUMBER num_ten = nullptr;
PRAT ln_ten = nullptr;
PRAT ln_two = nullptr;
PRAT rat_zero = nullptr;
PRAT rat_one = nullptr;
PRAT rat_neg_one = nullptr;
PRAT rat_two = nullptr;
PRAT rat_six = nullptr;
PRAT rat_half = nullptr;
PRAT rat_ten = nullptr;
PRAT pt_eight_five = nullptr;
PRAT pi = nullptr;
PRAT pi_over_two = nullptr;
PRAT two_pi = nullptr;
PRAT one_pt_five_pi = nullptr;
PRAT e_to_one_half = nullptr;
PRAT rat_exp = nullptr;
PRAT rad_to_deg = nullptr;
PRAT rad_to_grad = nullptr;
PRAT rat_qword = nullptr;
PRAT rat_dword = nullptr; // unsigned max ui32
PRAT rat_word = nullptr;
PRAT rat_byte = nullptr;
PRAT rat_360 = nullptr;
PRAT rat_400 = nullptr;
PRAT rat_180 = nullptr;
PRAT rat_200 = nullptr;
PRAT rat_nRadix = nullptr;
PRAT rat_smallest = nullptr;
PRAT rat_negsmallest = nullptr;
PRAT rat_max_exp = nullptr;
PRAT rat_min_exp = nullptr;
PRAT rat_max_fact = nullptr;
PRAT rat_min_fact = nullptr;
PRAT rat_min_i32 = nullptr; // min signed i32
PRAT rat_max_i32 = nullptr; // max signed i32
//----------------------------------------------------------------------------
//
// FUNCTION: ChangeConstants
//
// ARGUMENTS: base changing to, and precision to use.
//
// RETURN: None
//
// SIDE EFFECTS: sets a mess of constants.
//
//
//----------------------------------------------------------------------------
void ChangeConstants(uint32_t radix, int32_t precision)
{
// ratio is set to the number of digits in the current radix, you can get
// in the internal BASEX radix, this is important for length calculations
// in translating from radix to BASEX and back.
uint64_t limit = static_cast<uint64_t>(BASEX) / static_cast<uint64_t>(radix);
g_ratio = 0;
for (uint32_t digit = 1; digit < limit; digit *= radix)
{
g_ratio++;
}
g_ratio += !g_ratio;
destroyrat(rat_nRadix);
rat_nRadix = i32torat(radix);
// Check to see what we have to recalculate and what we don't
if (cbitsofprecision < (g_ratio * static_cast<int32_t>(radix) * precision))
{
g_ftrueinfinite = false;
INIT_AND_DUMP_RAW_NUM_IF_NULL(num_one, 1L);
INIT_AND_DUMP_RAW_NUM_IF_NULL(num_two, 2L);
INIT_AND_DUMP_RAW_NUM_IF_NULL(num_five, 5L);
INIT_AND_DUMP_RAW_NUM_IF_NULL(num_six, 6L);
INIT_AND_DUMP_RAW_NUM_IF_NULL(num_ten, 10L);
INIT_AND_DUMP_RAW_RAT_IF_NULL(rat_six, 6L);
INIT_AND_DUMP_RAW_RAT_IF_NULL(rat_two, 2L);
INIT_AND_DUMP_RAW_RAT_IF_NULL(rat_zero, 0L);
INIT_AND_DUMP_RAW_RAT_IF_NULL(rat_one, 1L);
INIT_AND_DUMP_RAW_RAT_IF_NULL(rat_neg_one, -1L);
INIT_AND_DUMP_RAW_RAT_IF_NULL(rat_ten, 10L);
INIT_AND_DUMP_RAW_RAT_IF_NULL(rat_word, 0xffff);
INIT_AND_DUMP_RAW_RAT_IF_NULL(rat_word, 0xff);
INIT_AND_DUMP_RAW_RAT_IF_NULL(rat_400, 400);
INIT_AND_DUMP_RAW_RAT_IF_NULL(rat_360, 360);
INIT_AND_DUMP_RAW_RAT_IF_NULL(rat_200, 200);
INIT_AND_DUMP_RAW_RAT_IF_NULL(rat_180, 180);
INIT_AND_DUMP_RAW_RAT_IF_NULL(rat_max_exp, 100000);
// 3248, is the max number for which calc is able to compute factorial, after that it is unable to compute due to overflow.
// Hence restricted factorial range as at most 3248.Beyond that calc will throw overflow error immediately.
INIT_AND_DUMP_RAW_RAT_IF_NULL(rat_max_fact, 3249);
// -1000, is the min number for which calc is able to compute factorial, after that it takes too long to compute.
INIT_AND_DUMP_RAW_RAT_IF_NULL(rat_min_fact, -1000);
DUPRAT(rat_smallest, rat_nRadix);
ratpowi32(&rat_smallest, -precision, precision);
DUPRAT(rat_negsmallest, rat_smallest);
rat_negsmallest->pp->sign = -1;
DUMPRAWRAT(rat_smallest);
DUMPRAWRAT(rat_negsmallest);
if (rat_half == nullptr)
{
createrat(rat_half);
DUPNUM(rat_half->pp, num_one);
DUPNUM(rat_half->pq, num_two);
DUMPRAWRAT(rat_half);
}
if (pt_eight_five == nullptr)
{
createrat(pt_eight_five);
pt_eight_five->pp = i32tonum(85L, BASEX);
pt_eight_five->pq = i32tonum(100L, BASEX);
DUMPRAWRAT(pt_eight_five);
}
DUPRAT(rat_qword, rat_two);
numpowi32(&(rat_qword->pp), 64, BASEX, precision);
subrat(&rat_qword, rat_one, precision);
DUMPRAWRAT(rat_qword);
DUPRAT(rat_dword, rat_two);
numpowi32(&(rat_dword->pp), 32, BASEX, precision);
subrat(&rat_dword, rat_one, precision);
DUMPRAWRAT(rat_dword);
DUPRAT(rat_max_i32, rat_two);
numpowi32(&(rat_max_i32->pp), 31, BASEX, precision);
DUPRAT(rat_min_i32, rat_max_i32);
subrat(&rat_max_i32, rat_one, precision); // rat_max_i32 = 2^31 -1
DUMPRAWRAT(rat_max_i32);
rat_min_i32->pp->sign *= -1; // rat_min_i32 = -2^31
DUMPRAWRAT(rat_min_i32);
DUPRAT(rat_min_exp, rat_max_exp);
rat_min_exp->pp->sign *= -1;
DUMPRAWRAT(rat_min_exp);
cbitsofprecision = g_ratio * radix * precision;
// Apparently when dividing 180 by pi, another (internal) digit of
// precision is needed.
int32_t extraPrecision = precision + g_ratio;
DUPRAT(pi, rat_half);
asinrat(&pi, radix, extraPrecision);
mulrat(&pi, rat_six, extraPrecision);
DUMPRAWRAT(pi);
DUPRAT(two_pi, pi);
DUPRAT(pi_over_two, pi);
DUPRAT(one_pt_five_pi, pi);
addrat(&two_pi, pi, extraPrecision);
DUMPRAWRAT(two_pi);
divrat(&pi_over_two, rat_two, extraPrecision);
DUMPRAWRAT(pi_over_two);
addrat(&one_pt_five_pi, pi_over_two, extraPrecision);
DUMPRAWRAT(one_pt_five_pi);
DUPRAT(e_to_one_half, rat_half);
_exprat(&e_to_one_half, extraPrecision);
DUMPRAWRAT(e_to_one_half);
DUPRAT(rat_exp, rat_one);
_exprat(&rat_exp, extraPrecision);
DUMPRAWRAT(rat_exp);
// WARNING: remember lograt uses exponent constants calculated above...
DUPRAT(ln_ten, rat_ten);
lograt(&ln_ten, extraPrecision);
DUMPRAWRAT(ln_ten);
DUPRAT(ln_two, rat_two);
lograt(&ln_two, extraPrecision);
DUMPRAWRAT(ln_two);
destroyrat(rad_to_deg);
rad_to_deg = i32torat(180L);
divrat(&rad_to_deg, pi, extraPrecision);
DUMPRAWRAT(rad_to_deg);
destroyrat(rad_to_grad);
rad_to_grad = i32torat(200L);
divrat(&rad_to_grad, pi, extraPrecision);
DUMPRAWRAT(rad_to_grad);
}
else
{
_readconstants();
DUPRAT(rat_smallest, rat_nRadix);
ratpowi32(&rat_smallest, -precision, precision);
DUPRAT(rat_negsmallest, rat_smallest);
rat_negsmallest->pp->sign = -1;
}
}
//----------------------------------------------------------------------------
//
// FUNCTION: intrat
//
// ARGUMENTS: pointer to x PRAT representation of number
//
// RETURN: no return value x PRAT is smashed with integral number
//
//
//----------------------------------------------------------------------------
void intrat(_Inout_ PRAT* px, uint32_t radix, int32_t precision)
{
// Only do the intrat operation if number is nonzero.
// and only if the bottom part is not one.
if (!zernum((*px)->pp) && !equnum((*px)->pq, num_one))
{
flatrat(*px, radix, precision);
// Subtract the fractional part of the rational
PRAT pret = nullptr;
DUPRAT(pret, *px);
remrat(&pret, rat_one);
subrat(px, pret, precision);
destroyrat(pret);
// Simplify the value if possible to resolve rounding errors
flatrat(*px, radix, precision);
}
}
//---------------------------------------------------------------------------
//
// FUNCTION: rat_equ
//
// ARGUMENTS: PRAT a and PRAT b
//
// RETURN: true if equal false otherwise.
//
//
//---------------------------------------------------------------------------
bool rat_equ(_In_ PRAT a, _In_ PRAT b, int32_t precision)
{
PRAT rattmp = nullptr;
DUPRAT(rattmp, a);
rattmp->pp->sign *= -1;
addrat(&rattmp, b, precision);
bool bret = zernum(rattmp->pp);
destroyrat(rattmp);
return (bret);
}
//---------------------------------------------------------------------------
//
// FUNCTION: rat_ge
//
// ARGUMENTS: PRAT a, PRAT b and int32_t precision
//
// RETURN: true if a is greater than or equal to b
//
//
//---------------------------------------------------------------------------
bool rat_ge(_In_ PRAT a, _In_ PRAT b, int32_t precision)
{
PRAT rattmp = nullptr;
DUPRAT(rattmp, a);
b->pp->sign *= -1;
addrat(&rattmp, b, precision);
b->pp->sign *= -1;
bool bret = (zernum(rattmp->pp) || SIGN(rattmp) == 1);
destroyrat(rattmp);
return (bret);
}
//---------------------------------------------------------------------------
//
// FUNCTION: rat_gt
//
// ARGUMENTS: PRAT a and PRAT b
//
// RETURN: true if a is greater than b
//
//
//---------------------------------------------------------------------------
bool rat_gt(_In_ PRAT a, _In_ PRAT b, int32_t precision)
{
PRAT rattmp = nullptr;
DUPRAT(rattmp, a);
b->pp->sign *= -1;
addrat(&rattmp, b, precision);
b->pp->sign *= -1;
bool bret = (!zernum(rattmp->pp) && SIGN(rattmp) == 1);
destroyrat(rattmp);
return (bret);
}
//---------------------------------------------------------------------------
//
// FUNCTION: rat_le
//
// ARGUMENTS: PRAT a, PRAT b and int32_t precision
//
// RETURN: true if a is less than or equal to b
//
//
//---------------------------------------------------------------------------
bool rat_le(_In_ PRAT a, _In_ PRAT b, int32_t precision)
{
PRAT rattmp = nullptr;
DUPRAT(rattmp, a);
b->pp->sign *= -1;
addrat(&rattmp, b, precision);
b->pp->sign *= -1;
bool bret = (zernum(rattmp->pp) || SIGN(rattmp) == -1);
destroyrat(rattmp);
return (bret);
}
//---------------------------------------------------------------------------
//
// FUNCTION: rat_lt
//
// ARGUMENTS: PRAT a, PRAT b and int32_t precision
//
// RETURN: true if a is less than b
//
//
//---------------------------------------------------------------------------
bool rat_lt(_In_ PRAT a, _In_ PRAT b, int32_t precision)
{
PRAT rattmp = nullptr;
DUPRAT(rattmp, a);
b->pp->sign *= -1;
addrat(&rattmp, b, precision);
b->pp->sign *= -1;
bool bret = (!zernum(rattmp->pp) && SIGN(rattmp) == -1);
destroyrat(rattmp);
return (bret);
}
//---------------------------------------------------------------------------
//
// FUNCTION: rat_neq
//
// ARGUMENTS: PRAT a and PRAT b
//
// RETURN: true if a is not equal to b
//
//
//---------------------------------------------------------------------------
bool rat_neq(_In_ PRAT a, _In_ PRAT b, int32_t precision)
{
PRAT rattmp = nullptr;
DUPRAT(rattmp, a);
rattmp->pp->sign *= -1;
addrat(&rattmp, b, precision);
bool bret = !(zernum(rattmp->pp));
destroyrat(rattmp);
return (bret);
}
//---------------------------------------------------------------------------
//
// function: scale
//
// ARGUMENTS: pointer to x PRAT representation of number, and scaling factor
//
// RETURN: no return, value x PRAT is smashed with a scaled number in the
// range of the scalefact.
//
//---------------------------------------------------------------------------
void scale(_Inout_ PRAT* px, _In_ PRAT scalefact, uint32_t radix, int32_t precision)
{
PRAT pret = nullptr;
DUPRAT(pret, *px);
// Logscale is a quick way to tell how much extra precision is needed for
// scaling by scalefact.
int32_t logscale = g_ratio * ((pret->pp->cdigit + pret->pp->exp) - (pret->pq->cdigit + pret->pq->exp));
if (logscale > 0)
{
precision += logscale;
}
divrat(&pret, scalefact, precision);
intrat(&pret, radix, precision);
mulrat(&pret, scalefact, precision);
pret->pp->sign *= -1;
addrat(px, pret, precision);
destroyrat(pret);
}
//---------------------------------------------------------------------------
//
// function: scale2pi
//
// ARGUMENTS: pointer to x PRAT representation of number
//
// RETURN: no return, value x PRAT is smashed with a scaled number in the
// range of 0..2pi
//
//---------------------------------------------------------------------------
void scale2pi(_Inout_ PRAT* px, uint32_t radix, int32_t precision)
{
PRAT pret = nullptr;
PRAT my_two_pi = nullptr;
DUPRAT(pret, *px);
// Logscale is a quick way to tell how much extra precision is needed for
// scaling by 2 pi.
int32_t logscale = g_ratio * ((pret->pp->cdigit + pret->pp->exp) - (pret->pq->cdigit + pret->pq->exp));
if (logscale > 0)
{
precision += logscale;
DUPRAT(my_two_pi, rat_half);
asinrat(&my_two_pi, radix, precision);
mulrat(&my_two_pi, rat_six, precision);
mulrat(&my_two_pi, rat_two, precision);
}
else
{
DUPRAT(my_two_pi, two_pi);
logscale = 0;
}
divrat(&pret, my_two_pi, precision);
intrat(&pret, radix, precision);
mulrat(&pret, my_two_pi, precision);
pret->pp->sign *= -1;
addrat(px, pret, precision);
destroyrat(my_two_pi);
destroyrat(pret);
}
//---------------------------------------------------------------------------
//
// FUNCTION: inbetween
//
// ARGUMENTS: PRAT *px, and PRAT range.
//
// RETURN: none, changes *px to -/+range, if px is outside -range..+range
//
//---------------------------------------------------------------------------
void inbetween(_In_ PRAT* px, _In_ PRAT range, int32_t precision)
{
if (rat_gt(*px, range, precision))
{
DUPRAT(*px, range);
}
else
{
range->pp->sign *= -1;
if (rat_lt(*px, range, precision))
{
DUPRAT(*px, range);
}
range->pp->sign *= -1;
}
}
//---------------------------------------------------------------------------
//
// FUNCTION: _dumprawrat
//
// ARGUMENTS: const wchar *name of variable, PRAT x, output stream out
//
// RETURN: none, prints the results of a dump of the internal structures
// of a PRAT, suitable for READRAWRAT to stderr.
//
//---------------------------------------------------------------------------
void _dumprawrat(_In_ const wchar_t* varname, _In_ PRAT rat, wostream& out)
{
_dumprawnum(varname, rat->pp, out);
_dumprawnum(varname, rat->pq, out);
}
//---------------------------------------------------------------------------
//
// FUNCTION: _dumprawnum
//
// ARGUMENTS: const wchar *name of variable, PNUMBER num, output stream out
//
// RETURN: none, prints the results of a dump of the internal structures
// of a PNUMBER, suitable for READRAWNUM to stderr.
//
//---------------------------------------------------------------------------
void _dumprawnum(_In_ const wchar_t* varname, _In_ PNUMBER num, wostream& out)
{
out << L"NUMBER " << varname << L" = {\n";
out << L"\t" << num->sign << L",\n";
out << L"\t" << num->cdigit << L",\n";
out << L"\t" << num->exp << L",\n";
out << L"\t{ ";
for (int i = 0; i < num->cdigit; i++)
{
out << L" " << num->mant[i] << L",";
}
out << L"}\n";
out << L"};\n";
}
void _readconstants(void)
{
READRAWNUM(num_one);
READRAWNUM(num_two);
READRAWNUM(num_five);
READRAWNUM(num_six);
READRAWNUM(num_ten);
READRAWRAT(pt_eight_five);
READRAWRAT(rat_six);
READRAWRAT(rat_two);
READRAWRAT(rat_zero);
READRAWRAT(rat_one);
READRAWRAT(rat_neg_one);
READRAWRAT(rat_half);
READRAWRAT(rat_ten);
READRAWRAT(pi);
READRAWRAT(two_pi);
READRAWRAT(pi_over_two);
READRAWRAT(one_pt_five_pi);
READRAWRAT(e_to_one_half);
READRAWRAT(rat_exp);
READRAWRAT(ln_ten);
READRAWRAT(ln_two);
READRAWRAT(rad_to_deg);
READRAWRAT(rad_to_grad);
READRAWRAT(rat_qword);
READRAWRAT(rat_dword);
READRAWRAT(rat_word);
READRAWRAT(rat_byte);
READRAWRAT(rat_360);
READRAWRAT(rat_400);
READRAWRAT(rat_180);
READRAWRAT(rat_200);
READRAWRAT(rat_smallest);
READRAWRAT(rat_negsmallest);
READRAWRAT(rat_max_exp);
READRAWRAT(rat_min_exp);
READRAWRAT(rat_max_fact);
READRAWRAT(rat_min_fact);
READRAWRAT(rat_min_i32);
READRAWRAT(rat_max_i32);
}
//---------------------------------------------------------------------------
//
// FUNCTION: trimit
//
// ARGUMENTS: PRAT *px, int32_t precision
//
//
// DESCRIPTION: Chops off digits from rational numbers to avoid time
// explosions in calculations of functions using series.
// It can be shown that it is enough to only keep the first n digits
// of the largest of p or q in the rational p over q form, and of course
// scale the smaller by the same number of digits. This will give you
// n-1 digits of accuracy. This dramatically speeds up calculations
// involving hundreds of digits or more.
// The last part of this trim dealing with exponents never affects accuracy
//
// RETURN: none, modifies the pointed to PRAT
//
//---------------------------------------------------------------------------
void trimit(_Inout_ PRAT* px, int32_t precision)
{
if (!g_ftrueinfinite)
{
PNUMBER pp = (*px)->pp;
PNUMBER pq = (*px)->pq;
int32_t trim = g_ratio * (min((pp->cdigit + pp->exp), (pq->cdigit + pq->exp)) - 1) - precision;
if (trim > g_ratio)
{
trim /= g_ratio;
if (trim <= pp->exp)
{
pp->exp -= trim;
}
else
{
memmove(pp->mant, &(pp->mant[trim - pp->exp]), sizeof(MANTTYPE) * (pp->cdigit - trim + pp->exp));
pp->cdigit -= trim - pp->exp;
pp->exp = 0;
}
if (trim <= pq->exp)
{
pq->exp -= trim;
}
else
{
memmove(pq->mant, &(pq->mant[trim - pq->exp]), sizeof(MANTTYPE) * (pq->cdigit - trim + pq->exp));
pq->cdigit -= trim - pq->exp;
pq->exp = 0;
}
}
trim = min(pp->exp, pq->exp);
pp->exp -= trim;
pq->exp -= trim;
}
}