Fixes #324 . Description of the changes: In an effort to support other compilers (#109), this change reworks how precompiled headers are handled. For toolchains where precompiled headers are not used, there is unnecessary compilation cost because each source file explicity includes the pch, meaning all system headers in the pch were recompiled for each translation unit. This change modifies the project's files so that each translation unit includes a minimal set of dependent headers. For MSVC users, the precompiled headers option is still enabled and the precompiled header is added to each translation unit using the compiler's Forced Includes option. The end result is that MSVC users still see the same build times, but other toolchains are free to use or not use precompiled headers. Risks introduced Given that our CI build uses MSVC, this change introduces the risk that a system header is added to the pch and the CalcManager project builds correctly, but builds could be broken for other toolsets that don't use pch. We know we want to add support for Clang in our CI build (#211). It seems reasonable to also compile without precompiled headers there so that we can regression test this setup. How changes were validated: Rebuild CalcManager project. Compile time: ~4.5s. Disable precompiled headers, keeping explicit include for pch in each source file. Compile time: ~13s. Remove explicit pch inclusion and add the appropriate headers to each translation unit to allow the project to compile. Compile time: ~8s. Re-enable pch and include it using the Forced Includes compiler option. MSVC compile time: ~4.5s. Minor changes Delete 'targetver.h'. I found this while looking around for system headers in the project. It's unused and unreferenced so let's remove it.
231 lines
5.3 KiB
C++
231 lines
5.3 KiB
C++
// Copyright (c) Microsoft Corporation. All rights reserved.
|
|
// Licensed under the MIT License.
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Package Title ratpak
|
|
// File transh.c
|
|
// Copyright (C) 1995-96 Microsoft
|
|
// Date 01-16-95
|
|
//
|
|
//
|
|
// Description
|
|
//
|
|
// Contains hyperbolic sin, cos, and tan for rationals.
|
|
//
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
#include "ratpak.h"
|
|
|
|
|
|
|
|
bool IsValidForHypFunc(PRAT px, int32_t precision)
|
|
{
|
|
PRAT ptmp = nullptr;
|
|
bool bRet = true;
|
|
|
|
DUPRAT(ptmp,rat_min_exp);
|
|
divrat(&ptmp, rat_ten, precision);
|
|
if ( rat_lt( px, ptmp, precision) )
|
|
{
|
|
bRet = false;
|
|
}
|
|
destroyrat( ptmp );
|
|
return bRet;
|
|
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// FUNCTION: sinhrat, _sinhrat
|
|
//
|
|
// ARGUMENTS: x PRAT representation of number to take the sine hyperbolic
|
|
// of
|
|
// RETURN: sinh of x in PRAT form.
|
|
//
|
|
// EXPLANATION: This uses Taylor series
|
|
//
|
|
// n
|
|
// ___ 2j+1
|
|
// \ ] X
|
|
// \ ---------
|
|
// / (2j+1)!
|
|
// /__]
|
|
// j=0
|
|
// or,
|
|
// n
|
|
// ___ 2
|
|
// \ ] X
|
|
// \ thisterm ; where thisterm = thisterm * ---------
|
|
// / j j+1 j (2j)*(2j+1)
|
|
// /__]
|
|
// j=0
|
|
//
|
|
// thisterm = X ; and stop when thisterm < precision used.
|
|
// 0 n
|
|
//
|
|
// if x is bigger than 1.0 (e^x-e^-x)/2 is used.
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
|
|
|
|
void _sinhrat( PRAT *px, int32_t precision)
|
|
|
|
{
|
|
if ( !IsValidForHypFunc(*px, precision))
|
|
{
|
|
// Don't attempt exp of anything large or small
|
|
throw( CALC_E_DOMAIN );
|
|
}
|
|
|
|
CREATETAYLOR();
|
|
|
|
DUPRAT(pret,*px);
|
|
DUPRAT(thisterm,pret);
|
|
|
|
DUPNUM(n2,num_one);
|
|
|
|
do {
|
|
NEXTTERM(xx,INC(n2) DIVNUM(n2) INC(n2) DIVNUM(n2), precision);
|
|
} while ( !SMALL_ENOUGH_RAT( thisterm, precision) );
|
|
|
|
DESTROYTAYLOR();
|
|
}
|
|
|
|
void sinhrat( PRAT *px, uint32_t radix, int32_t precision)
|
|
|
|
{
|
|
PRAT tmpx= nullptr;
|
|
|
|
if ( rat_ge( *px, rat_one, precision) )
|
|
{
|
|
DUPRAT(tmpx,*px);
|
|
exprat(px, radix, precision);
|
|
tmpx->pp->sign *= -1;
|
|
exprat(&tmpx, radix, precision);
|
|
subrat( px, tmpx, precision);
|
|
divrat( px, rat_two, precision);
|
|
destroyrat( tmpx );
|
|
}
|
|
else
|
|
{
|
|
_sinhrat( px, precision);
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// FUNCTION: coshrat
|
|
//
|
|
// ARGUMENTS: x PRAT representation of number to take the cosine
|
|
// hyperbolic of
|
|
//
|
|
// RETURN: cosh of x in PRAT form.
|
|
//
|
|
// EXPLANATION: This uses Taylor series
|
|
//
|
|
// n
|
|
// ___ 2j
|
|
// \ ] X
|
|
// \ ---------
|
|
// / (2j)!
|
|
// /__]
|
|
// j=0
|
|
// or,
|
|
// n
|
|
// ___ 2
|
|
// \ ] X
|
|
// \ thisterm ; where thisterm = thisterm * ---------
|
|
// / j j+1 j (2j)*(2j+1)
|
|
// /__]
|
|
// j=0
|
|
//
|
|
// thisterm = 1 ; and stop when thisterm < precision used.
|
|
// 0 n
|
|
//
|
|
// if x is bigger than 1.0 (e^x+e^-x)/2 is used.
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
|
|
|
|
void _coshrat( PRAT *px, uint32_t radix, int32_t precision)
|
|
|
|
{
|
|
if ( !IsValidForHypFunc(*px, precision))
|
|
{
|
|
// Don't attempt exp of anything large or small
|
|
throw( CALC_E_DOMAIN );
|
|
}
|
|
|
|
CREATETAYLOR();
|
|
|
|
pret->pp=i32tonum( 1L, radix);
|
|
pret->pq=i32tonum( 1L, radix);
|
|
|
|
DUPRAT(thisterm,pret)
|
|
|
|
n2=i32tonum(0L, radix);
|
|
|
|
do {
|
|
NEXTTERM(xx,INC(n2) DIVNUM(n2) INC(n2) DIVNUM(n2), precision);
|
|
} while ( !SMALL_ENOUGH_RAT( thisterm, precision) );
|
|
|
|
DESTROYTAYLOR();
|
|
}
|
|
|
|
void coshrat( PRAT *px, uint32_t radix, int32_t precision)
|
|
|
|
{
|
|
PRAT tmpx= nullptr;
|
|
|
|
(*px)->pp->sign = 1;
|
|
(*px)->pq->sign = 1;
|
|
if ( rat_ge( *px, rat_one, precision) )
|
|
{
|
|
DUPRAT(tmpx,*px);
|
|
exprat(px, radix, precision);
|
|
tmpx->pp->sign *= -1;
|
|
exprat(&tmpx, radix, precision);
|
|
addrat( px, tmpx, precision);
|
|
divrat( px, rat_two, precision);
|
|
destroyrat( tmpx );
|
|
}
|
|
else
|
|
{
|
|
_coshrat( px, radix, precision);
|
|
}
|
|
// Since *px might be epsilon below 1 due to TRIMIT
|
|
// we need this trick here.
|
|
if ( rat_lt(*px, rat_one, precision) )
|
|
{
|
|
DUPRAT(*px,rat_one);
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// FUNCTION: tanhrat
|
|
//
|
|
// ARGUMENTS: x PRAT representation of number to take the tangent
|
|
// hyperbolic of
|
|
//
|
|
// RETURN: tanh of x in PRAT form.
|
|
//
|
|
// EXPLANATION: This uses sinhrat and coshrat
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
|
|
void tanhrat( PRAT *px, uint32_t radix, int32_t precision)
|
|
|
|
{
|
|
PRAT ptmp= nullptr;
|
|
|
|
DUPRAT(ptmp,*px);
|
|
sinhrat(px, radix, precision);
|
|
coshrat(&ptmp, radix, precision);
|
|
mulnumx(&((*px)->pp),ptmp->pq);
|
|
mulnumx(&((*px)->pq),ptmp->pp);
|
|
|
|
destroyrat(ptmp);
|
|
|
|
}
|