Fixes #324 . Description of the changes: In an effort to support other compilers (#109), this change reworks how precompiled headers are handled. For toolchains where precompiled headers are not used, there is unnecessary compilation cost because each source file explicity includes the pch, meaning all system headers in the pch were recompiled for each translation unit. This change modifies the project's files so that each translation unit includes a minimal set of dependent headers. For MSVC users, the precompiled headers option is still enabled and the precompiled header is added to each translation unit using the compiler's Forced Includes option. The end result is that MSVC users still see the same build times, but other toolchains are free to use or not use precompiled headers. Risks introduced Given that our CI build uses MSVC, this change introduces the risk that a system header is added to the pch and the CalcManager project builds correctly, but builds could be broken for other toolsets that don't use pch. We know we want to add support for Clang in our CI build (#211). It seems reasonable to also compile without precompiled headers there so that we can regression test this setup. How changes were validated: Rebuild CalcManager project. Compile time: ~4.5s. Disable precompiled headers, keeping explicit include for pch in each source file. Compile time: ~13s. Remove explicit pch inclusion and add the appropriate headers to each translation unit to allow the project to compile. Compile time: ~8s. Re-enable pch and include it using the Forced Includes compiler option. MSVC compile time: ~4.5s. Minor changes Delete 'targetver.h'. I found this while looking around for system headers in the project. It's unused and unreferenced so let's remove it.
258 lines
6.9 KiB
C++
258 lines
6.9 KiB
C++
// Copyright (c) Microsoft Corporation. All rights reserved.
|
|
// Licensed under the MIT License.
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Package Title ratpak
|
|
// File fact.c
|
|
// Copyright (C) 1995-96 Microsoft
|
|
// Date 01-16-95
|
|
//
|
|
//
|
|
// Description
|
|
//
|
|
// Contains fact(orial) and supporting _gamma functions.
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
#include "ratpak.h"
|
|
|
|
|
|
#define ABSRAT(x) (((x)->pp->sign=1),((x)->pq->sign=1))
|
|
#define NEGATE(x) ((x)->pp->sign *= -1)
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// FUNCTION: factrat, _gamma, gamma
|
|
//
|
|
// ARGUMENTS: x PRAT representation of number to take the sine of
|
|
//
|
|
// RETURN: factorial of x in PRAT form.
|
|
//
|
|
// EXPLANATION: This uses Taylor series
|
|
//
|
|
// n
|
|
// ___ 2j
|
|
// n \ ] A 1 A
|
|
// A \ -----[ ---- - ---------------]
|
|
// / (2j)! n+2j (n+2j+1)(2j+1)
|
|
// /__]
|
|
// j=0
|
|
//
|
|
// / oo
|
|
// | n-1 -x __
|
|
// This was derived from | x e dx = |
|
|
// | | (n) { = (n-1)! for +integers}
|
|
// / 0
|
|
//
|
|
// It can be shown that the above series is within precision if A is chosen
|
|
// big enough.
|
|
// A n precision
|
|
// Based on the relation ne = A 10 A was chosen as
|
|
//
|
|
// precision
|
|
// A = ln(Base /n)+1
|
|
// A += n*ln(A) This is close enough for precision > base and n < 1.5
|
|
//
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
|
|
|
|
void _gamma( PRAT *pn, uint32_t radix, int32_t precision)
|
|
|
|
{
|
|
PRAT factorial= nullptr;
|
|
PNUMBER count= nullptr;
|
|
PRAT tmp= nullptr;
|
|
PRAT one_pt_five= nullptr;
|
|
PRAT a= nullptr;
|
|
PRAT a2= nullptr;
|
|
PRAT term= nullptr;
|
|
PRAT sum= nullptr;
|
|
PRAT err= nullptr;
|
|
PRAT mpy= nullptr;
|
|
PRAT ratprec = nullptr;
|
|
PRAT ratRadix = nullptr;
|
|
int32_t oldprec;
|
|
|
|
// Set up constants and initial conditions
|
|
oldprec = precision;
|
|
ratprec = i32torat( oldprec );
|
|
|
|
// Find the best 'A' for convergence to the required precision.
|
|
a=i32torat( radix );
|
|
lograt(&a, precision);
|
|
mulrat(&a, ratprec, precision);
|
|
|
|
// Really is -ln(n)+1, but -ln(n) will be < 1
|
|
// if we scale n between 0.5 and 1.5
|
|
addrat(&a, rat_two, precision);
|
|
DUPRAT(tmp,a);
|
|
lograt(&tmp, precision);
|
|
mulrat(&tmp, *pn, precision);
|
|
addrat(&a, tmp, precision);
|
|
addrat(&a, rat_one, precision);
|
|
|
|
// Calculate the necessary bump in precision and up the precision.
|
|
// The following code is equivalent to
|
|
// precision += ln(exp(a)*pow(a,n+1.5))-ln(radix));
|
|
DUPRAT(tmp,*pn);
|
|
one_pt_five=i32torat( 3L );
|
|
divrat( &one_pt_five, rat_two, precision);
|
|
addrat( &tmp, one_pt_five, precision);
|
|
DUPRAT(term,a);
|
|
powratcomp( &term, tmp, radix, precision);
|
|
DUPRAT( tmp, a );
|
|
exprat( &tmp, radix, precision);
|
|
mulrat( &term, tmp, precision);
|
|
lograt( &term, precision);
|
|
ratRadix = i32torat(radix);
|
|
DUPRAT(tmp,ratRadix);
|
|
lograt( &tmp, precision);
|
|
subrat( &term, tmp, precision);
|
|
precision += rattoi32( term, radix, precision);
|
|
|
|
// Set up initial terms for series, refer to series in above comment block.
|
|
DUPRAT(factorial,rat_one); // Start factorial out with one
|
|
count = i32tonum( 0L, BASEX );
|
|
|
|
DUPRAT(mpy,a);
|
|
powratcomp(&mpy,*pn, radix, precision);
|
|
// a2=a^2
|
|
DUPRAT(a2,a);
|
|
mulrat(&a2, a, precision);
|
|
|
|
// sum=(1/n)-(a/(n+1))
|
|
DUPRAT(sum,rat_one);
|
|
divrat(&sum, *pn, precision);
|
|
DUPRAT(tmp,*pn);
|
|
addrat(&tmp, rat_one, precision);
|
|
DUPRAT(term,a);
|
|
divrat(&term, tmp, precision);
|
|
subrat(&sum, term, precision);
|
|
|
|
DUPRAT(err,ratRadix);
|
|
NEGATE(ratprec);
|
|
powratcomp(&err,ratprec, radix, precision);
|
|
divrat(&err, ratRadix, precision);
|
|
|
|
// Just get something not tiny in term
|
|
DUPRAT(term, rat_two );
|
|
|
|
// Loop until precision is reached, or asked to halt.
|
|
while ( !zerrat( term ) && rat_gt( term, err, precision) )
|
|
{
|
|
addrat(pn, rat_two, precision);
|
|
|
|
// WARNING: mixing numbers and rationals here.
|
|
// for speed and efficiency.
|
|
INC(count);
|
|
mulnumx(&(factorial->pp),count);
|
|
INC(count)
|
|
mulnumx(&(factorial->pp),count);
|
|
|
|
divrat(&factorial, a2, precision);
|
|
|
|
DUPRAT(tmp,*pn);
|
|
addrat( &tmp, rat_one, precision);
|
|
destroyrat(term);
|
|
createrat(term);
|
|
DUPNUM(term->pp,count);
|
|
DUPNUM(term->pq,num_one);
|
|
addrat( &term, rat_one, precision);
|
|
mulrat( &term, tmp, precision);
|
|
DUPRAT(tmp,a);
|
|
divrat( &tmp, term, precision);
|
|
|
|
DUPRAT(term,rat_one);
|
|
divrat( &term, *pn, precision);
|
|
subrat( &term, tmp, precision);
|
|
|
|
divrat (&term, factorial, precision);
|
|
addrat( &sum, term, precision);
|
|
ABSRAT(term);
|
|
}
|
|
|
|
// Multiply by factor.
|
|
mulrat( &sum, mpy, precision);
|
|
|
|
// And cleanup
|
|
precision = oldprec;
|
|
destroyrat(ratprec);
|
|
destroyrat(err);
|
|
destroyrat(term);
|
|
destroyrat(a);
|
|
destroyrat(a2);
|
|
destroyrat(tmp);
|
|
destroyrat(one_pt_five);
|
|
|
|
destroynum(count);
|
|
|
|
destroyrat(factorial);
|
|
destroyrat(*pn);
|
|
DUPRAT(*pn,sum);
|
|
destroyrat(sum);
|
|
}
|
|
|
|
void factrat( PRAT *px, uint32_t radix, int32_t precision)
|
|
|
|
{
|
|
PRAT fact = nullptr;
|
|
PRAT frac = nullptr;
|
|
PRAT neg_rat_one = nullptr;
|
|
|
|
if ( rat_gt( *px, rat_max_fact, precision) || rat_lt( *px, rat_min_fact, precision) )
|
|
{
|
|
// Don't attempt factorial of anything too large or small.
|
|
throw CALC_E_OVERFLOW;
|
|
}
|
|
|
|
DUPRAT(fact,rat_one);
|
|
|
|
DUPRAT(neg_rat_one,rat_one);
|
|
neg_rat_one->pp->sign *= -1;
|
|
|
|
DUPRAT( frac, *px );
|
|
fracrat( &frac, radix, precision);
|
|
|
|
// Check for negative integers and throw an error.
|
|
if ( ( zerrat(frac) || ( LOGRATRADIX(frac) <= -precision) ) &&
|
|
( SIGN(*px) == -1 ) )
|
|
{
|
|
throw CALC_E_DOMAIN;
|
|
}
|
|
while ( rat_gt( *px, rat_zero, precision) &&
|
|
( LOGRATRADIX(*px) > -precision) )
|
|
{
|
|
mulrat( &fact, *px, precision);
|
|
subrat( px, rat_one, precision);
|
|
}
|
|
|
|
// Added to make numbers 'close enough' to integers use integer factorial.
|
|
if ( LOGRATRADIX(*px) <= -precision)
|
|
{
|
|
DUPRAT((*px),rat_zero);
|
|
intrat(&fact, radix, precision);
|
|
}
|
|
|
|
while ( rat_lt( *px, neg_rat_one, precision) )
|
|
{
|
|
addrat( px, rat_one, precision);
|
|
divrat( &fact, *px, precision);
|
|
}
|
|
|
|
if ( rat_neq( *px, rat_zero, precision) )
|
|
{
|
|
addrat( px, rat_one, precision);
|
|
_gamma( px, radix, precision);
|
|
mulrat( px, fact, precision);
|
|
}
|
|
else
|
|
{
|
|
DUPRAT(*px,fact);
|
|
}
|
|
|
|
destroyrat(fact);
|
|
destroyrat(frac);
|
|
destroyrat(neg_rat_one);
|
|
}
|
|
|