calculator/src/CalcManager/Ratpack/fact.cpp
2020-03-16 15:52:48 -07:00

248 lines
6.6 KiB
C++

// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
//-----------------------------------------------------------------------------
// Package Title ratpak
// File fact.c
// Copyright (C) 1995-96 Microsoft
// Date 01-16-95
//
//
// Description
//
// Contains fact(orial) and supporting _gamma functions.
//
//-----------------------------------------------------------------------------
#include "ratpak.h"
#define ABSRAT(x) (((x)->pp->sign = 1), ((x)->pq->sign = 1))
#define NEGATE(x) ((x)->pp->sign *= -1)
//-----------------------------------------------------------------------------
//
// FUNCTION: factrat, _gamma, gamma
//
// ARGUMENTS: x PRAT representation of number to take the sine of
//
// RETURN: factorial of x in PRAT form.
//
// EXPLANATION: This uses Taylor series
//
// n
// ___ 2j
// n \ ] A 1 A
// A \ -----[ ---- - ---------------]
// / (2j)! n+2j (n+2j+1)(2j+1)
// /__]
// j=0
//
// / oo
// | n-1 -x __
// This was derived from | x e dx = |
// | | (n) { = (n-1)! for +integers}
// / 0
//
// It can be shown that the above series is within precision if A is chosen
// big enough.
// A n precision
// Based on the relation ne = A 10 A was chosen as
//
// precision
// A = ln(Base /n)+1
// A += n*ln(A) This is close enough for precision > base and n < 1.5
//
//
//-----------------------------------------------------------------------------
void _gamma(PRAT* pn, uint32_t radix, int32_t precision)
{
PRAT factorial = nullptr;
PNUMBER count = nullptr;
PRAT tmp = nullptr;
PRAT one_pt_five = nullptr;
PRAT a = nullptr;
PRAT a2 = nullptr;
PRAT term = nullptr;
PRAT sum = nullptr;
PRAT err = nullptr;
PRAT mpy = nullptr;
// Set up constants and initial conditions
PRAT ratprec = i32torat(precision);
// Find the best 'A' for convergence to the required precision.
a = i32torat(radix);
lograt(&a, precision);
mulrat(&a, ratprec, precision);
// Really is -ln(n)+1, but -ln(n) will be < 1
// if we scale n between 0.5 and 1.5
addrat(&a, rat_two, precision);
DUPRAT(tmp, a);
lograt(&tmp, precision);
mulrat(&tmp, *pn, precision);
addrat(&a, tmp, precision);
addrat(&a, rat_one, precision);
// Calculate the necessary bump in precision and up the precision.
// The following code is equivalent to
// precision += ln(exp(a)*pow(a,n+1.5))-ln(radix));
DUPRAT(tmp, *pn);
one_pt_five = i32torat(3L);
divrat(&one_pt_five, rat_two, precision);
addrat(&tmp, one_pt_five, precision);
DUPRAT(term, a);
powratcomp(&term, tmp, radix, precision);
DUPRAT(tmp, a);
exprat(&tmp, radix, precision);
mulrat(&term, tmp, precision);
lograt(&term, precision);
const auto ratRadix = i32torat(radix);
DUPRAT(tmp, ratRadix);
lograt(&tmp, precision);
subrat(&term, tmp, precision);
precision += rattoi32(term, radix, precision);
// Set up initial terms for series, refer to series in above comment block.
DUPRAT(factorial, rat_one); // Start factorial out with one
count = i32tonum(0L, BASEX);
DUPRAT(mpy, a);
powratcomp(&mpy, *pn, radix, precision);
// a2=a^2
DUPRAT(a2, a);
mulrat(&a2, a, precision);
// sum=(1/n)-(a/(n+1))
DUPRAT(sum, rat_one);
divrat(&sum, *pn, precision);
DUPRAT(tmp, *pn);
addrat(&tmp, rat_one, precision);
DUPRAT(term, a);
divrat(&term, tmp, precision);
subrat(&sum, term, precision);
DUPRAT(err, ratRadix);
NEGATE(ratprec);
powratcomp(&err, ratprec, radix, precision);
divrat(&err, ratRadix, precision);
// Just get something not tiny in term
DUPRAT(term, rat_two);
// Loop until precision is reached, or asked to halt.
while (!zerrat(term) && rat_gt(term, err, precision))
{
addrat(pn, rat_two, precision);
// WARNING: mixing numbers and rationals here.
// for speed and efficiency.
INC(count);
mulnumx(&(factorial->pp), count);
INC(count)
mulnumx(&(factorial->pp), count);
divrat(&factorial, a2, precision);
DUPRAT(tmp, *pn);
addrat(&tmp, rat_one, precision);
destroyrat(term);
createrat(term);
DUPNUM(term->pp, count);
DUPNUM(term->pq, num_one);
addrat(&term, rat_one, precision);
mulrat(&term, tmp, precision);
DUPRAT(tmp, a);
divrat(&tmp, term, precision);
DUPRAT(term, rat_one);
divrat(&term, *pn, precision);
subrat(&term, tmp, precision);
divrat(&term, factorial, precision);
addrat(&sum, term, precision);
ABSRAT(term);
}
// Multiply by factor.
mulrat(&sum, mpy, precision);
// And cleanup
destroyrat(ratprec);
destroyrat(err);
destroyrat(term);
destroyrat(a);
destroyrat(a2);
destroyrat(tmp);
destroyrat(one_pt_five);
destroynum(count);
destroyrat(factorial);
destroyrat(*pn);
DUPRAT(*pn, sum);
destroyrat(sum);
}
void factrat(_Inout_ PRAT* px, uint32_t radix, int32_t precision)
{
PRAT fact = nullptr;
PRAT frac = nullptr;
PRAT neg_rat_one = nullptr;
if (rat_gt(*px, rat_max_fact, precision) || rat_lt(*px, rat_min_fact, precision))
{
// Don't attempt factorial of anything too large or small.
throw CALC_E_OVERFLOW;
}
DUPRAT(fact, rat_one);
DUPRAT(neg_rat_one, rat_one);
neg_rat_one->pp->sign *= -1;
DUPRAT(frac, *px);
fracrat(&frac, radix, precision);
// Check for negative integers and throw an error.
if ((zerrat(frac) || (LOGRATRADIX(frac) <= -precision)) && (SIGN(*px) == -1))
{
throw CALC_E_DOMAIN;
}
while (rat_gt(*px, rat_zero, precision) && (LOGRATRADIX(*px) > -precision))
{
mulrat(&fact, *px, precision);
subrat(px, rat_one, precision);
}
// Added to make numbers 'close enough' to integers use integer factorial.
if (LOGRATRADIX(*px) <= -precision)
{
DUPRAT((*px), rat_zero);
intrat(&fact, radix, precision);
}
while (rat_lt(*px, neg_rat_one, precision))
{
addrat(px, rat_one, precision);
divrat(&fact, *px, precision);
}
if (rat_neq(*px, rat_zero, precision))
{
addrat(px, rat_one, precision);
_gamma(px, radix, precision);
mulrat(px, fact, precision);
}
else
{
DUPRAT(*px, fact);
}
destroyrat(fact);
destroyrat(frac);
destroyrat(neg_rat_one);
}