Merge master into feature/GraphingCalculator branch (#585)

* Merge master into feature/GraphingCalculator branch
This commit is contained in:
Stephanie Anderl
2019-07-15 11:17:21 -07:00
committed by GitHub
parent 1475b49120
commit a418777f02
447 changed files with 18056 additions and 19323 deletions

View File

@@ -0,0 +1,14 @@
target_sources(CalcManager PRIVATE
calc.cpp
CalcInput.cpp
CalcUtils.cpp
History.cpp
Number.cpp
Rational.cpp
RationalMath.cpp
scicomm.cpp
scidisp.cpp
scifunc.cpp
scioper.cpp
sciset.cpp
)

View File

@@ -1,7 +1,7 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
#include "pch.h"
#include <sstream>
#include "Header Files/CalcEngine.h"
using namespace std;
@@ -124,15 +124,15 @@ bool CalcInput::TryAddDigit(unsigned int value, uint32_t radix, bool isIntegerMo
else if (radix == 10)
{
// If value length is at least the max, we know we can't add another digit.
if(pNumSec->value.size() < maxNumStr.size())
if (pNumSec->value.size() < maxNumStr.size())
{
// Compare value to substring of maxNumStr of value.size() length.
// If cmpResult > 0:
// eg. max is "127", and the current number is "20". first digit itself says we are out.
// eg. max is "127", and the current number is "20". first digit itself says we are out.
// Additional digit is not possible
// If cmpResult < 0:
// Success case. eg. max is "127", and current number is say "11". The second digit '1' being <
// Success case. eg. max is "127", and current number is say "11". The second digit '1' being <
// corresponding digit '2', means all digits are possible to append, like 119 will still be < 127
// If cmpResult == 0:
@@ -151,7 +151,7 @@ bool CalcInput::TryAddDigit(unsigned int value, uint32_t radix, bool isIntegerMo
}
else if (pNumSec->IsNegative() && chDigit <= lastChar + 1)
{
// Negative value case, eg. max is "127", and current number is "-12". Then 8 is also valid, as the range
// Negative value case, eg. max is "127", and current number is "-12". Then 8 is also valid, as the range
// is always from -(max+1)...max in signed mode
allowExtraDigit = true;
}

View File

@@ -1,7 +1,6 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
#include "pch.h"
#include "Header Files/CalcEngine.h"
#include "Header Files/CalcUtils.h"
@@ -34,9 +33,7 @@ bool IsDigitOpCode(OpCode opCode)
// was never inout, we need to revert the state changes made as a result of this test
bool IsGuiSettingOpCode(OpCode opCode)
{
if (IsOpInRange(opCode, IDM_HEX, IDM_BIN) ||
IsOpInRange(opCode, IDM_QWORD, IDM_BYTE) ||
IsOpInRange(opCode, IDM_DEG, IDM_GRAD))
if (IsOpInRange(opCode, IDM_HEX, IDM_BIN) || IsOpInRange(opCode, IDM_QWORD, IDM_BYTE) || IsOpInRange(opCode, IDM_DEG, IDM_GRAD))
{
return true;
}

View File

@@ -1,7 +1,6 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
#include "pch.h"
#include "Header Files/CalcEngine.h"
#include "Command.h"
#include "CalculatorVector.h"
@@ -12,7 +11,8 @@ constexpr int ASCII_0 = 48;
using namespace std;
using namespace CalcEngine;
namespace {
namespace
{
void IFT(ResultCode hr)
{
if (FAILED(hr))
@@ -39,11 +39,11 @@ void CHistoryCollector::ReinitHistory()
// Constructor
// Can throw Out of memory error
CHistoryCollector::CHistoryCollector(ICalcDisplay *pCalcDisplay, std::shared_ptr<IHistoryDisplay> pHistoryDisplay, wchar_t decimalSymbol) :
m_pHistoryDisplay(pHistoryDisplay),
m_pCalcDisplay(pCalcDisplay),
m_iCurLineHistStart(-1),
m_decimalSymbol(decimalSymbol)
CHistoryCollector::CHistoryCollector(ICalcDisplay* pCalcDisplay, std::shared_ptr<IHistoryDisplay> pHistoryDisplay, wchar_t decimalSymbol)
: m_pHistoryDisplay(pHistoryDisplay)
, m_pCalcDisplay(pCalcDisplay)
, m_iCurLineHistStart(-1)
, m_decimalSymbol(decimalSymbol)
{
ReinitHistory();
}
@@ -303,7 +303,8 @@ void CHistoryCollector::CompleteHistoryLine(wstring_view numStr)
{
if (nullptr != m_pCalcDisplay)
{
m_pCalcDisplay->SetExpressionDisplay(std::make_shared<CalculatorVector<std::pair<std::wstring, int>>>(), std::make_shared<CalculatorVector<std::shared_ptr<IExpressionCommand>>>());
m_pCalcDisplay->SetExpressionDisplay(
std::make_shared<CalculatorVector<std::pair<std::wstring, int>>>(), std::make_shared<CalculatorVector<std::shared_ptr<IExpressionCommand>>>());
}
if (nullptr != m_pHistoryDisplay)
@@ -324,14 +325,14 @@ void CHistoryCollector::ClearHistoryLine(wstring_view errStr)
{
if (nullptr != m_pCalcDisplay)
{
m_pCalcDisplay->SetExpressionDisplay(std::make_shared<CalculatorVector<std::pair<std::wstring, int>>>(), std::make_shared<CalculatorVector<std::shared_ptr<IExpressionCommand>>>());
m_pCalcDisplay->SetExpressionDisplay(
std::make_shared<CalculatorVector<std::pair<std::wstring, int>>>(), std::make_shared<CalculatorVector<std::shared_ptr<IExpressionCommand>>>());
}
m_iCurLineHistStart = -1; // It will get recomputed at the first Opnd
ReinitHistory();
}
}
// Adds the given string psz to the globally maintained current equation string at the end.
// Also returns the 0 based index in the string just added. Can throw out of memory error
int CHistoryCollector::IchAddSzToEquationSz(wstring_view str, int icommandIndex)
@@ -393,14 +394,13 @@ void CHistoryCollector::SetExpressionDisplay()
{
m_pCalcDisplay->SetExpressionDisplay(m_spTokens, m_spCommands);
}
}
int CHistoryCollector::AddCommand(_In_ const std::shared_ptr<IExpressionCommand> & spCommand)
int CHistoryCollector::AddCommand(_In_ const std::shared_ptr<IExpressionCommand>& spCommand)
{
if (m_spCommands == nullptr)
{
m_spCommands = std::make_shared <CalculatorVector<std::shared_ptr<IExpressionCommand>>>();
m_spCommands = std::make_shared<CalculatorVector<std::shared_ptr<IExpressionCommand>>>();
}
if (FAILED(m_spCommands->Append(spCommand)))

View File

@@ -1,26 +1,28 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
#include "pch.h"
#include <algorithm>
#include "Header Files/Number.h"
using namespace std;
namespace CalcEngine
{
Number::Number() noexcept :
Number(1, 0, { 0 })
{}
Number::Number() noexcept
: Number(1, 0, { 0 })
{
}
Number::Number(int32_t sign, int32_t exp, vector<uint32_t> const& mantissa) noexcept :
m_sign{ sign },
m_exp{ exp },
m_mantissa{ mantissa }
{}
Number::Number(int32_t sign, int32_t exp, vector<uint32_t> const& mantissa) noexcept
: m_sign{ sign }
, m_exp{ exp }
, m_mantissa{ mantissa }
{
}
Number::Number(PNUMBER p) noexcept :
m_sign{ p->sign },
m_exp{ p->exp },
m_mantissa{}
Number::Number(PNUMBER p) noexcept
: m_sign{ p->sign }
, m_exp{ p->exp }
, m_mantissa{}
{
m_mantissa.reserve(p->cdigit);
copy(p->mant, p->mant + p->cdigit, back_inserter(m_mantissa));
@@ -33,7 +35,7 @@ namespace CalcEngine
ret->exp = this->Exp();
ret->cdigit = static_cast<int32_t>(this->Mantissa().size());
MANTTYPE *ptrRet = ret->mant;
MANTTYPE* ptrRet = ret->mant;
for (auto const& digit : this->Mantissa())
{
*ptrRet++ = digit;
@@ -59,6 +61,6 @@ namespace CalcEngine
bool Number::IsZero() const
{
return all_of(m_mantissa.begin(), m_mantissa.end(), [](auto &&i) { return i == 0; });
return all_of(m_mantissa.begin(), m_mantissa.end(), [](auto&& i) { return i == 0; });
}
}

View File

@@ -1,16 +1,16 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
#include "pch.h"
#include "Header Files/Rational.h"
using namespace std;
namespace CalcEngine
{
Rational::Rational() noexcept :
m_p{},
m_q{ 1, 0, { 1 } }
{}
Rational::Rational() noexcept
: m_p{}
, m_q{ 1, 0, { 1 } }
{
}
Rational::Rational(Number const& n) noexcept
{
@@ -24,10 +24,11 @@ namespace CalcEngine
m_q = Number(1, qExp, { 1 });
}
Rational::Rational(Number const& p, Number const& q) noexcept :
m_p{ p },
m_q{ q }
{}
Rational::Rational(Number const& p, Number const& q) noexcept
: m_p{ p }
, m_q{ q }
{
}
Rational::Rational(int32_t i)
{
@@ -51,8 +52,8 @@ namespace CalcEngine
Rational::Rational(uint64_t ui)
{
uint32_t hi = HIDWORD(ui);
uint32_t lo = LODWORD(ui);
uint32_t hi = (uint32_t) (((ui) >> 32) & 0xffffffff);
uint32_t lo = (uint32_t) ui;
Rational temp = (Rational{ hi } << 32) | lo;
@@ -60,10 +61,11 @@ namespace CalcEngine
m_q = Number{ temp.Q() };
}
Rational::Rational(PRAT prat) noexcept :
m_p{ Number{prat->pp} },
m_q{ Number{prat->pq} }
{}
Rational::Rational(PRAT prat) noexcept
: m_p{ Number{ prat->pp } }
, m_q{ Number{ prat->pq } }
{
}
PRAT Rational::ToPRAT() const
{
@@ -182,6 +184,13 @@ namespace CalcEngine
return *this;
}
/// <summary>
/// Calculate the remainder after division, the sign of a result will match the sign of the current object.
/// </summary>
/// <remarks>
/// This function has the same behavior as the standard C/C++ operator '%'
/// to calculate the modulus after division instead, use <see cref="RationalMath::Mod"/> instead.
/// </remarks>
Rational& Rational::operator%=(Rational const& rhs)
{
PRAT lhsRat = this->ToPRAT();
@@ -189,7 +198,7 @@ namespace CalcEngine
try
{
modrat(&lhsRat, rhsRat);
remrat(&lhsRat, rhsRat);
destroyrat(rhsRat);
}
catch (uint32_t error)
@@ -342,6 +351,13 @@ namespace CalcEngine
return lhs;
}
/// <summary>
/// Calculate the remainder after division, the sign of a result will match the sign of lhs.
/// </summary>
/// <remarks>
/// This function has the same behavior as the standard C/C++ operator '%', to calculate the modulus after division instead, use <see
/// cref="Rational::operator%"/> instead.
/// </remarks>
Rational operator%(Rational lhs, Rational const& rhs)
{
lhs %= rhs;

View File

@@ -1,7 +1,6 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
#include "pch.h"
#include "Header Files/RationalMath.h"
using namespace std;
@@ -387,3 +386,33 @@ Rational RationalMath::ATanh(Rational const& rat)
return result;
}
/// <summary>
/// Calculate the modulus after division, the sign of the result will match the sign of b.
/// </summary>
/// <remarks>
/// When one of the operand is negative
/// the result will differ from the C/C++ operator '%'
/// use <see cref="Rational::operator%"/> instead to calculate the remainder after division.
/// </remarks>
Rational RationalMath::Mod(Rational const& a, Rational const& b)
{
PRAT prat = a.ToPRAT();
PRAT pn = b.ToPRAT();
try
{
modrat(&prat, pn);
destroyrat(pn);
}
catch (uint32_t error)
{
destroyrat(prat);
destroyrat(pn);
throw(error);
}
auto res = Rational{ prat };
destroyrat(prat);
return res;
}

View File

@@ -1,9 +1,8 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
#include "pch.h"
#include <cassert>
#include "Header Files/CalcEngine.h"
#include "CalculatorResource.h"
using namespace std;
@@ -25,13 +24,18 @@ static constexpr wstring_view DEFAULT_NUMBER_STR = L"0";
// Read strings for keys, errors, trig types, etc.
// These will be copied from the resources to local memory.
array<wstring, CSTRINGSENGMAX> CCalcEngine::s_engineStrings;
unordered_map<wstring, wstring> CCalcEngine::s_engineStrings;
void CCalcEngine::LoadEngineStrings(CalculationManager::IResourceProvider& resourceProvider)
{
for (size_t i = 0; i < s_engineStrings.size(); i++)
for (const auto& sid : g_sids)
{
s_engineStrings[i] = resourceProvider.GetCEngineString(g_sids[i]);
auto locKey = wstring{ sid };
auto locString = resourceProvider.GetCEngineString(locKey);
if (!locString.empty())
{
s_engineStrings[locKey] = locString;
}
}
}
@@ -54,42 +58,47 @@ void CCalcEngine::InitialOneTimeOnlySetup(CalculationManager::IResourceProvider&
// CCalcEngine::CCalcEngine
//
//////////////////////////////////////////////////
CCalcEngine::CCalcEngine(bool fPrecedence, bool fIntegerMode, CalculationManager::IResourceProvider* const pResourceProvider, __in_opt ICalcDisplay *pCalcDisplay, __in_opt shared_ptr<IHistoryDisplay> pHistoryDisplay) :
m_fPrecedence(fPrecedence),
m_fIntegerMode(fIntegerMode),
m_pCalcDisplay(pCalcDisplay),
m_resourceProvider(pResourceProvider),
m_nOpCode(0),
m_nPrevOpCode(0),
m_bChangeOp(false),
m_bRecord(false),
m_bSetCalcState(false),
m_input(DEFAULT_DEC_SEPARATOR),
m_nFE(FMT_FLOAT),
m_memoryValue{ make_unique<Rational>() },
m_holdVal{},
m_currentVal{},
m_lastVal{},
m_parenVals{},
m_precedenceVals{},
m_bError(false),
m_bInv(false),
m_bNoPrevEqu(true),
m_radix(DEFAULT_RADIX),
m_precision(DEFAULT_PRECISION),
m_cIntDigitsSav(DEFAULT_MAX_DIGITS),
m_decGrouping(),
m_numberString(DEFAULT_NUMBER_STR),
m_nTempCom(0),
m_openParenCount(0),
m_nOp(),
m_nPrecOp(),
m_precedenceOpCount(0),
m_nLastCom(0),
m_angletype(ANGLE_DEG),
m_numwidth(QWORD_WIDTH),
m_HistoryCollector(pCalcDisplay, pHistoryDisplay, DEFAULT_DEC_SEPARATOR),
m_groupSeparator(DEFAULT_GRP_SEPARATOR)
CCalcEngine::CCalcEngine(
bool fPrecedence,
bool fIntegerMode,
CalculationManager::IResourceProvider* const pResourceProvider,
__in_opt ICalcDisplay* pCalcDisplay,
__in_opt shared_ptr<IHistoryDisplay> pHistoryDisplay)
: m_fPrecedence(fPrecedence)
, m_fIntegerMode(fIntegerMode)
, m_pCalcDisplay(pCalcDisplay)
, m_resourceProvider(pResourceProvider)
, m_nOpCode(0)
, m_nPrevOpCode(0)
, m_bChangeOp(false)
, m_bRecord(false)
, m_bSetCalcState(false)
, m_input(DEFAULT_DEC_SEPARATOR)
, m_nFE(FMT_FLOAT)
, m_memoryValue{ make_unique<Rational>() }
, m_holdVal{}
, m_currentVal{}
, m_lastVal{}
, m_parenVals{}
, m_precedenceVals{}
, m_bError(false)
, m_bInv(false)
, m_bNoPrevEqu(true)
, m_radix(DEFAULT_RADIX)
, m_precision(DEFAULT_PRECISION)
, m_cIntDigitsSav(DEFAULT_MAX_DIGITS)
, m_decGrouping()
, m_numberString(DEFAULT_NUMBER_STR)
, m_nTempCom(0)
, m_openParenCount(0)
, m_nOp()
, m_nPrecOp()
, m_precedenceOpCount(0)
, m_nLastCom(0)
, m_angletype(ANGLE_DEG)
, m_numwidth(QWORD_WIDTH)
, m_HistoryCollector(pCalcDisplay, pHistoryDisplay, DEFAULT_DEC_SEPARATOR)
, m_groupSeparator(DEFAULT_GRP_SEPARATOR)
{
InitChopNumbers();
@@ -168,7 +177,7 @@ void CCalcEngine::SettingsChanged()
m_HistoryCollector.SetDecimalSymbol(m_decimalSeparator);
// put the new decimal symbol into the table used to draw the decimal key
s_engineStrings[IDS_DECIMAL] = m_decimalSeparator;
s_engineStrings[SIDS_DECIMAL_SEPARATOR] = m_decimalSeparator;
// we need to redraw to update the decimal point button
numChanged = true;

View File

@@ -12,30 +12,24 @@
*
* Author:
\****************************************************************************/
#include "pch.h"
#include <string>
#include "Header Files/CalcEngine.h"
#include "Header Files/CalcUtils.h"
#define IDC_RADSIN IDC_UNARYLAST+1
#define IDC_RADCOS IDC_UNARYLAST+2
#define IDC_RADTAN IDC_UNARYLAST+3
#define IDC_GRADSIN IDC_UNARYLAST+4
#define IDC_GRADCOS IDC_UNARYLAST+5
#define IDC_GRADTAN IDC_UNARYLAST+6
using namespace std;
using namespace CalcEngine;
namespace {
namespace
{
// NPrecedenceOfOp
//
// returns a virtual number for precedence for the operator. We expect binary operator only, otherwise the lowest number
// 0 is returned. Higher the number, higher the precedence of the operator.
int NPrecedenceOfOp(int nopCode)
{
static uint8_t rgbPrec[] = { 0,0, IDC_OR,0, IDC_XOR,0, IDC_AND,1,
IDC_ADD,2, IDC_SUB,2, IDC_RSHF,3, IDC_LSHF,3,
IDC_MOD,3, IDC_DIV,3, IDC_MUL,3, IDC_PWR,4, IDC_ROOT, 4 };
static uint8_t rgbPrec[] = { 0, 0, IDC_OR, 0, IDC_XOR, 0, IDC_AND, 1, IDC_ADD, 2, IDC_SUB, 2, IDC_RSHF,
3, IDC_LSHF, 3, IDC_MOD, 3, IDC_DIV, 3, IDC_MUL, 3, IDC_PWR, 4, IDC_ROOT, 4 };
unsigned int iPrec;
iPrec = 0;
@@ -48,7 +42,6 @@ namespace {
iPrec = 0;
}
return rgbPrec[iPrec + 1];
}
}
@@ -96,7 +89,7 @@ void CCalcEngine::ProcessCommand(OpCode wParam)
void CCalcEngine::ProcessCommandWorker(OpCode wParam)
{
int nx, ni;
int nx, ni;
// Save the last command. Some commands are not saved in this manor, these
// commands are:
@@ -131,18 +124,13 @@ void CCalcEngine::ProcessCommandWorker(OpCode wParam)
// Toggle Record/Display mode if appropriate.
if (m_bRecord)
{
if (IsOpInRange(wParam, IDC_AND, IDC_MMINUS) ||
IsOpInRange(wParam, IDC_OPENP, IDC_CLOSEP) ||
IsOpInRange(wParam, IDM_HEX, IDM_BIN) ||
IsOpInRange(wParam, IDM_QWORD, IDM_BYTE) ||
IsOpInRange(wParam, IDM_DEG, IDM_GRAD) ||
IsOpInRange(wParam, IDC_BINEDITSTART, IDC_BINEDITSTART + 63) ||
(IDC_INV == wParam) ||
(IDC_SIGN == wParam && 10 != m_radix))
if (IsOpInRange(wParam, IDC_AND, IDC_MMINUS) || IsOpInRange(wParam, IDC_OPENP, IDC_CLOSEP) || IsOpInRange(wParam, IDM_HEX, IDM_BIN)
|| IsOpInRange(wParam, IDM_QWORD, IDM_BYTE) || IsOpInRange(wParam, IDM_DEG, IDM_GRAD)
|| IsOpInRange(wParam, IDC_BINEDITSTART, IDC_BINEDITSTART + 63) || (IDC_INV == wParam) || (IDC_SIGN == wParam && 10 != m_radix))
{
m_bRecord = false;
m_currentVal = m_input.ToRational(m_radix, m_precision);
DisplayNum(); // Causes 3.000 to shrink to 3. on first op.
DisplayNum(); // Causes 3.000 to shrink to 3. on first op.
}
}
else
@@ -247,9 +235,9 @@ void CCalcEngine::ProcessCommandWorker(OpCode wParam)
else
{
/* do the last operation and then if the precedence array is not
* empty or the top is not the '(' demarcator then pop the top
* of the array and recheck precedence against the new operator
*/
* empty or the top is not the '(' demarcator then pop the top
* of the array and recheck precedence against the new operator
*/
m_currentVal = DoOperation(m_nOpCode, m_currentVal, m_lastVal);
m_nPrevOpCode = m_nOpCode;
@@ -278,7 +266,6 @@ void CCalcEngine::ProcessCommandWorker(OpCode wParam)
m_HistoryCollector.PopLastOpndStart();
goto DoPrecedenceCheckAgain;
}
}
}
@@ -343,11 +330,9 @@ void CCalcEngine::ProcessCommandWorker(OpCode wParam)
/* reset the m_bInv flag and indicators if it is set
and have been used */
if (m_bInv &&
((wParam == IDC_CHOP) ||
(wParam == IDC_SIN) || (wParam == IDC_COS) || (wParam == IDC_TAN) ||
(wParam == IDC_LN) || (wParam == IDC_DMS) || (wParam == IDC_DEGREES) ||
(wParam == IDC_SINH) || (wParam == IDC_COSH) || (wParam == IDC_TANH)))
if (m_bInv
&& ((wParam == IDC_CHOP) || (wParam == IDC_SIN) || (wParam == IDC_COS) || (wParam == IDC_TAN) || (wParam == IDC_LN) || (wParam == IDC_DMS)
|| (wParam == IDC_DEGREES) || (wParam == IDC_SINH) || (wParam == IDC_COSH) || (wParam == IDC_TANH)))
{
m_bInv = false;
}
@@ -381,24 +366,25 @@ void CCalcEngine::ProcessCommandWorker(OpCode wParam)
{
if (!m_bChangeOp)
{
// A special goody we are doing to preserve the history, if all was done was serious of unary operations last
// Preserve history, if everything done before was a series of unary operations.
CheckAndAddLastBinOpToHistory(false);
}
m_lastVal = 0;
m_bChangeOp = false;
m_precedenceOpCount = m_nTempCom = m_nLastCom = m_nOpCode = m_openParenCount = 0;
m_openParenCount = 0;
m_precedenceOpCount = m_nTempCom = m_nLastCom = m_nOpCode = 0;
m_nPrevOpCode = 0;
m_bNoPrevEqu = true;
/* clear the parenthesis status box indicator, this will not be
cleared for CENTR */
if (nullptr != m_pCalcDisplay)
{
m_pCalcDisplay->SetParenDisplayText(L"");
m_pCalcDisplay->SetExpressionDisplay(make_shared<CalculatorVector<pair<wstring, int>>>(), make_shared<CalculatorVector<shared_ptr<IExpressionCommand>>>());
m_pCalcDisplay->SetParenthesisNumber(0);
m_pCalcDisplay->SetExpressionDisplay(
make_shared<CalculatorVector<pair<wstring, int>>>(), make_shared<CalculatorVector<shared_ptr<IExpressionCommand>>>());
}
m_HistoryCollector.ClearHistoryLine(wstring());
@@ -441,7 +427,7 @@ void CCalcEngine::ProcessCommandWorker(OpCode wParam)
// automatic closing of all the parenthesis to get a meaningful result as well as ensure data integrity
m_nTempCom = m_nLastCom; // Put back this last saved command to the prev state so ) can be handled properly
ProcessCommand(IDC_CLOSEP);
m_nLastCom = m_nTempCom; // Actually this is IDC_CLOSEP
m_nLastCom = m_nTempCom; // Actually this is IDC_CLOSEP
m_nTempCom = (int)wParam; // put back in the state where last op seen was IDC_CLOSEP, and current op is IDC_EQU
}
@@ -491,7 +477,8 @@ void CCalcEngine::ProcessCommandWorker(OpCode wParam)
m_HistoryCollector.CompleteHistoryLine(groupedString);
if (nullptr != m_pCalcDisplay)
{
m_pCalcDisplay->SetExpressionDisplay(make_shared<CalculatorVector<pair<wstring, int>>>(), make_shared<CalculatorVector<shared_ptr<IExpressionCommand>>>());
m_pCalcDisplay->SetExpressionDisplay(
make_shared<CalculatorVector<pair<wstring, int>>>(), make_shared<CalculatorVector<shared_ptr<IExpressionCommand>>>());
}
}
@@ -601,7 +588,7 @@ void CCalcEngine::ProcessCommandWorker(OpCode wParam)
// Set the "(=xx" indicator.
if (nullptr != m_pCalcDisplay)
{
m_pCalcDisplay->SetParenDisplayText(m_openParenCount ? to_wstring(m_openParenCount) : L"");
m_pCalcDisplay->SetParenthesisNumber(m_openParenCount >= 0 ? static_cast<unsigned int>(m_openParenCount) : 0);
}
if (!m_bError)
@@ -755,7 +742,6 @@ void CCalcEngine::ProcessCommandWorker(OpCode wParam)
m_bInv = !m_bInv;
break;
}
}
// Helper function to resolve one item on the precedence stack.
@@ -764,8 +750,8 @@ void CCalcEngine::ResolveHighestPrecedenceOperation()
// Is there a valid operation around?
if (m_nOpCode)
{
// If this is the first EQU in a string, set m_holdVal=m_currentVal
// Otherwise let m_currentVal=m_holdVal. This keeps m_currentVal constant
// If this is the first EQU in a string, set m_holdVal=m_currentVal
// Otherwise let m_currentVal=m_holdVal. This keeps m_currentVal constant
// through all EQUs in a row.
if (m_bNoPrevEqu)
{
@@ -820,7 +806,6 @@ void CCalcEngine::CheckAndAddLastBinOpToHistory(bool addToHistory)
// So erase the last operand
m_HistoryCollector.RemoveLastOpndFromHistory();
}
}
else if (m_HistoryCollector.FOpndAddedToHistory() && !m_bError)
{
@@ -829,8 +814,7 @@ void CCalcEngine::CheckAndAddLastBinOpToHistory(bool addToHistory)
// Let us make a current value =. So in case of 4 SQRT (or a equation under braces) and then a new equation is started, we can just form
// a useful equation of sqrt(4) = 2 and continue a new equation from now on. But no point in doing this for things like
// MR, SUM etc. All you will get is 5 = 5 kind of no useful equation.
if ((IsUnaryOpCode(m_nLastCom) || IDC_SIGN == m_nLastCom || IDC_CLOSEP == m_nLastCom) &&
0 == m_openParenCount)
if ((IsUnaryOpCode(m_nLastCom) || IDC_SIGN == m_nLastCom || IDC_CLOSEP == m_nLastCom) && 0 == m_openParenCount)
{
if (addToHistory)
{
@@ -868,155 +852,93 @@ void CCalcEngine::DisplayAnnounceBinaryOperator()
// Unary operator Function Name table Element
// since unary operators button names aren't exactly friendly for history purpose,
// we have this separate table to get its localized name and for its Inv function if it exists.
typedef struct
struct FunctionNameElement
{
int idsFunc; // index of string for the unary op function. Can be NULL, in which case it same as button name
int idsFuncInv; // index of string for Inv of unary op. Can be NULL, in case it is same as idsFunc
bool fDontUseInExpEval; // true if this cant be used in reverse direction as well, ie. during expression evaluation
} UFNE;
wstring degreeString; // Used by default if there are no rad or grad specific strings.
wstring inverseDegreeString; // Will fall back to degreeString if empty
wstring radString;
wstring inverseRadString; // Will fall back to radString if empty
wstring gradString;
wstring inverseGradString; // Will fall back to gradString if empty
bool hasAngleStrings = ((!radString.empty()) || (!inverseRadString.empty()) || (!gradString.empty()) || (!inverseGradString.empty()));
};
// Table for each unary operator
static const UFNE rgUfne[] =
{
/* IDC_CHOP */{ 0, IDS_FRAC, false },
/* IDC_ROL */{ 0, 0, true },
/* IDC_ROR */{ 0, 0, true },
static const std::unordered_map<int, FunctionNameElement> unaryOperatorStringTable = {
{ IDC_CHOP, { L"", SIDS_FRAC } },
/* IDC_COM */{ 0, 0, true },
/* IDC_SIN */{ IDS_SIND, IDS_ASIND, false }, // default in this table is degrees for sin,cos & tan
/* IDC_COS */{ IDS_COSD, IDS_ACOSD, false },
/* IDC_TAN */{ IDS_TAND, IDS_ATAND, false },
{ IDC_SIN, { SIDS_SIND, SIDS_ASIND, SIDS_SINR, SIDS_ASINR, SIDS_SING, SIDS_ASING } },
{ IDC_COS, { SIDS_COSD, SIDS_ACOSD, SIDS_COSR, SIDS_ACOSR, SIDS_COSG, SIDS_ACOSG } },
{ IDC_TAN, { SIDS_TAND, SIDS_ATAND, SIDS_TANR, SIDS_ATANR, SIDS_TANG, SIDS_ATANG } },
/* IDC_SINH */{ 0, IDS_ASINH, false },
/* IDC_COSH */{ 0, IDS_ACOSH, false },
/* IDC_TANH */{ 0, IDS_ATANH, false },
{ IDC_SINH, { L"", SIDS_ASINH } },
{ IDC_COSH, { L"", SIDS_ACOSH } },
{ IDC_TANH, { L"", SIDS_ATANH } },
/* IDC_LN */{ 0, IDS_POWE, false },
/* IDC_LOG */{ 0, 0, false },
/* IDC_SQRT */{ 0, 0, false },
/* IDC_SQR */{ IDS_SQR, 0, false },
/* IDC_CUB */{ IDS_CUBE, 0, false },
/* IDC_FAC */{ IDS_FACT, 0, false },
/* IDC_REC */{ IDS_REC, 0, false },
/* IDC_DMS */{ 0, IDS_DEGREES, false },
/* IDC_CUBEROOT */{ 0, 0, false },
/* IDC_POW10 */{ 0, 0, false },
/* IDC_PERCENT */{ 0, 0, false },
/* IDC_RADSIN */{ IDS_SINR, IDS_ASINR, false },
/* IDC_RADCOS */{ IDS_COSR, IDS_ACOSR, false },
/* IDC_RADTAN */{ IDS_TANR, IDS_ATANR, false },
/* IDC_GRADCOS */{ IDS_SING, IDS_ASING, false },
/* IDC_GRADCOS */{ IDS_COSG, IDS_ACOSG, false },
/* IDC_GRADTAN */{ IDS_TANG, IDS_ATANG, false },
{ IDC_LN, { L"", SIDS_POWE } },
{ IDC_SQR, { SIDS_SQR } },
{ IDC_CUB, { SIDS_CUBE } },
{ IDC_FAC, { SIDS_FACT } },
{ IDC_REC, { SIDS_RECIPROC } },
{ IDC_DMS, { L"", SIDS_DEGREES } },
{ IDC_SIGN, { SIDS_NEGATE } },
{ IDC_DEGREES, { SIDS_DEGREES } }
};
wstring_view CCalcEngine::OpCodeToUnaryString(int nOpCode, bool fInv, ANGLE_TYPE angletype)
{
// Special cases for Sign and Degrees
if (IDC_SIGN == nOpCode)
{
return GetString(IDS_NEGATE);
}
if (IDC_DEGREES == nOpCode)
{
return GetString(IDS_DEGREES);
}
// Correct the trigonometric functions with type of angle argument they take
if (ANGLE_RAD == angletype)
{
switch (nOpCode)
{
case IDC_SIN:
nOpCode = IDC_RADSIN;
break;
case IDC_COS:
nOpCode = IDC_RADCOS;
break;
case IDC_TAN:
nOpCode = IDC_RADTAN;
break;
}
}
else if (ANGLE_GRAD == angletype)
{
switch (nOpCode)
{
case IDC_SIN:
nOpCode = IDC_GRADSIN;
break;
case IDC_COS:
nOpCode = IDC_GRADCOS;
break;
case IDC_TAN:
nOpCode = IDC_GRADTAN;
break;
}
}
// Try to lookup the ID in the UFNE table
int ids = 0;
int iufne = nOpCode - IDC_UNARYFIRST;
if (iufne >= 0 && (size_t)iufne < size(rgUfne))
wstring ids = L"";
if (auto pair = unaryOperatorStringTable.find(nOpCode); pair != unaryOperatorStringTable.end())
{
if (fInv)
const FunctionNameElement& element = pair->second;
if (!element.hasAngleStrings || ANGLE_DEG == angletype)
{
ids = rgUfne[iufne].idsFuncInv;
if (fInv)
{
ids = element.inverseDegreeString;
}
if (ids.empty())
{
ids = element.degreeString;
}
}
if (0 == ids)
else if (ANGLE_RAD == angletype)
{
ids = rgUfne[iufne].idsFunc;
if (fInv)
{
ids = element.inverseRadString;
}
if (ids.empty())
{
ids = element.radString;
}
}
else if (ANGLE_GRAD == angletype)
{
if (fInv)
{
ids = element.inverseGradString;
}
if (ids.empty())
{
ids = element.gradString;
}
}
}
if (!ids.empty())
{
return GetString(ids);
}
// If we didn't find an ID in the table, use the op code.
if (0 == ids)
{
ids = IdStrFromCmdId(nOpCode);
}
return GetString(ids);
}
//
// Sets the Angle Mode for special unary op IDC's which are used to index to the table rgUfne
// and returns the equivalent plain IDC for trigonometric function. If it isn't a trigonometric function
// returns the passed in idc itself.
int CCalcEngine::IdcSetAngleTypeDecMode(int idc)
{
int idcAngleCmd = IDM_DEG;
switch (idc)
{
case IDC_RADSIN:
idcAngleCmd = IDM_RAD;
idc = IDC_SIN;
break;
case IDC_RADCOS:
idcAngleCmd = IDM_RAD;
idc = IDC_COS;
break;
case IDC_RADTAN:
idcAngleCmd = IDM_RAD;
idc = IDC_TAN;
break;
case IDC_GRADSIN:
idcAngleCmd = IDM_GRAD;
idc = IDC_SIN;
break;
case IDC_GRADCOS:
idcAngleCmd = IDM_GRAD;
idc = IDC_COS;
break;
case IDC_GRADTAN:
idcAngleCmd = IDM_GRAD;
idc = IDC_TAN;
break;
}
ProcessCommand(idcAngleCmd);
return idc;
return OpCodeToString(nOpCode);
}
bool CCalcEngine::IsCurrentTooBigForTrig()

View File

@@ -12,7 +12,9 @@
*
* Author:
\****************************************************************************/
#include "pch.h"
#include <sstream>
#include <regex>
#include "Header Files/CalcEngine.h"
using namespace std;
@@ -23,7 +25,6 @@ constexpr uint32_t MAX_GROUPING_SIZE = 16;
constexpr wstring_view c_decPreSepStr = L"[+-]?(\\d*)[";
constexpr wstring_view c_decPostSepStr = L"]?(\\d*)(?:e[+-]?(\\d*))?$";
/****************************************************************************\
* void DisplayNum(void)
*
@@ -35,18 +36,19 @@ constexpr wstring_view c_decPostSepStr = L"]?(\\d*)(?:e[+-]?(\\d*))?$";
//
// State of calc last time DisplayNum was called
//
typedef struct {
typedef struct
{
Rational value;
int32_t precision;
uint32_t radix;
int nFE;
NUM_WIDTH numwidth;
bool fIntMath;
bool bRecord;
bool bUseSep;
int nFE;
NUM_WIDTH numwidth;
bool fIntMath;
bool bRecord;
bool bUseSep;
} LASTDISP;
LASTDISP gldPrevious = { 0, -1, 0, -1, (NUM_WIDTH)-1, false, false, false };
static LASTDISP gldPrevious = { 0, -1, 0, -1, (NUM_WIDTH)-1, false, false, false };
// Truncates if too big, makes it a non negative - the number in rat. Doesn't do anything if not in INT mode
CalcEngine::Rational CCalcEngine::TruncateNumForIntMath(CalcEngine::Rational const& rat)
@@ -64,7 +66,7 @@ CalcEngine::Rational CCalcEngine::TruncateNumForIntMath(CalcEngine::Rational con
if (result < 0)
{
// if negative make positive by doing a twos complement
result = -(result) - 1;
result = -(result)-1;
result ^= m_chopNumbers[m_numwidth];
}
@@ -82,15 +84,8 @@ void CCalcEngine::DisplayNum(void)
// something important has changed since the last time DisplayNum was
// called.
//
if (m_bRecord ||
gldPrevious.value != m_currentVal ||
gldPrevious.precision != m_precision ||
gldPrevious.radix != m_radix ||
gldPrevious.nFE != (int)m_nFE ||
gldPrevious.bUseSep != true ||
gldPrevious.numwidth != m_numwidth ||
gldPrevious.fIntMath != m_fIntegerMode ||
gldPrevious.bRecord != m_bRecord)
if (m_bRecord || gldPrevious.value != m_currentVal || gldPrevious.precision != m_precision || gldPrevious.radix != m_radix || gldPrevious.nFE != (int)m_nFE
|| gldPrevious.bUseSep != true || gldPrevious.numwidth != m_numwidth || gldPrevious.fIntMath != m_fIntegerMode || gldPrevious.bRecord != m_bRecord)
{
gldPrevious.precision = m_precision;
gldPrevious.radix = m_radix;

View File

@@ -16,7 +16,6 @@
/*** ***/
/*** ***/
/**************************************************************************/
#include "pch.h"
#include "Header Files/CalcEngine.h"
using namespace std;
@@ -55,7 +54,7 @@ CalcEngine::Rational CCalcEngine::SciCalcFunctions(CalcEngine::Rational const& r
uint64_t w64Bits = result.ToUInt64_t();
uint64_t msb = (w64Bits >> (m_dwWordBitWidth - 1)) & 1;
w64Bits <<= 1; // LShift by 1
w64Bits <<= 1; // LShift by 1
w64Bits |= msb; // Set the prev Msb as the current Lsb
result = w64Bits;
@@ -169,9 +168,9 @@ CalcEngine::Rational CCalcEngine::SciCalcFunctions(CalcEngine::Rational const& r
case IDC_DEGREES:
ProcessCommand(IDC_INV);
// This case falls through to IDC_DMS case because in the old Win32 Calc,
// This case falls through to IDC_DMS case because in the old Win32 Calc,
// the degrees functionality was achieved as 'Inv' of 'dms' operation,
// so setting the IDC_INV command first and then performing 'dms' operation as global variables m_bInv, m_bRecord
// so setting the IDC_INV command first and then performing 'dms' operation as global variables m_bInv, m_bRecord
// are set properly through ProcessCommand(IDC_INV)
[[fallthrough]];
case IDC_DMS:
@@ -203,7 +202,7 @@ CalcEngine::Rational CCalcEngine::SciCalcFunctions(CalcEngine::Rational const& r
}
break;
}
} // end switch( op )
} // end switch( op )
}
catch (uint32_t nErrCode)
{
@@ -227,4 +226,3 @@ void CCalcEngine::DisplayError(uint32_t nError)
m_HistoryCollector.ClearHistoryLine(errorString);
}

View File

@@ -1,7 +1,6 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
#include "pch.h"
#include "Header Files/CalcEngine.h"
using namespace CalcEngine;
@@ -78,7 +77,7 @@ CalcEngine::Rational CCalcEngine::DoOperation(int operation, CalcEngine::Rationa
case IDC_DIV:
case IDC_MOD:
{
int iNumeratorSign = 1, iDenominatorSign = 1, iFinalSign = 1;
int iNumeratorSign = 1, iDenominatorSign = 1;
auto temp = result;
result = rhs;
@@ -107,20 +106,30 @@ CalcEngine::Rational CCalcEngine::DoOperation(int operation, CalcEngine::Rationa
if (operation == IDC_DIV)
{
iFinalSign = iNumeratorSign * iDenominatorSign;
result /= temp;
if (m_fIntegerMode && (iNumeratorSign * iDenominatorSign) == -1)
{
result = -(Integer(result));
}
}
else
{
iFinalSign = iNumeratorSign;
result %= temp;
}
if (m_fIntegerMode)
{
// Programmer mode, use remrat (remainder after division)
result %= temp;
if (m_fIntegerMode && iFinalSign == -1)
{
result = -(Integer(result));
if (iNumeratorSign == -1)
{
result = -(Integer(result));
}
}
else
{
// other modes, use modrat (modulus after division)
result = Mod(result, temp);
}
}
break;
}

View File

@@ -1,7 +1,6 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
#include "pch.h"
#include "Header Files/CalcEngine.h"
using namespace CalcEngine;
@@ -65,7 +64,7 @@ int32_t CCalcEngine::DwWordBitWidthFromeNumWidth(NUM_WIDTH /*numwidth*/)
uint32_t CCalcEngine::NRadixFromRadixType(RADIX_TYPE radixtype)
{
static constexpr uint32_t rgnRadish[4] = { 16, 10, 8, 2 }; /* Number bases in the same order as radixtype */
static constexpr uint32_t rgnRadish[4] = { 16, 10, 8, 2 }; /* Number bases in the same order as radixtype */
uint32_t radix = 10;
// convert special bases into symbolic values

View File

@@ -0,0 +1,11 @@
add_library(CalcManager
CalculatorHistory.cpp
CalculatorManager.cpp
ExpressionCommand.cpp
pch.cpp
UnitConverter.cpp
)
target_include_directories(CalcManager PUBLIC ${CMAKE_CURRENT_SOURCE_DIR})
add_subdirectory(Ratpack)
add_subdirectory(CEngine)

View File

@@ -45,8 +45,8 @@
<AppContainerApplication>true</AppContainerApplication>
<ApplicationType>Windows Store</ApplicationType>
<ApplicationTypeRevision>10.0</ApplicationTypeRevision>
<WindowsTargetPlatformVersion Condition="'$(WindowsTargetPlatformVersion)' == ''">10.0.17763.0</WindowsTargetPlatformVersion>
<WindowsTargetPlatformMinVersion>10.0.17134.0</WindowsTargetPlatformMinVersion>
<WindowsTargetPlatformVersion Condition="'$(WindowsTargetPlatformVersion)' == ''">10.0</WindowsTargetPlatformVersion>
<WindowsTargetPlatformMinVersion>10.0.18362.0</WindowsTargetPlatformMinVersion>
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" />
<!-- This has to be exactly in this place for this to work -->
@@ -56,46 +56,46 @@
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'" Label="Configuration">
<ConfigurationType>StaticLibrary</ConfigurationType>
<UseDebugLibraries>true</UseDebugLibraries>
<PlatformToolset>v141</PlatformToolset>
<PlatformToolset>v142</PlatformToolset>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|ARM'" Label="Configuration">
<ConfigurationType>StaticLibrary</ConfigurationType>
<UseDebugLibraries>true</UseDebugLibraries>
<PlatformToolset>v141</PlatformToolset>
<PlatformToolset>v142</PlatformToolset>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|ARM64'" Label="Configuration">
<ConfigurationType>StaticLibrary</ConfigurationType>
<UseDebugLibraries>true</UseDebugLibraries>
<PlatformToolset>v141</PlatformToolset>
<PlatformToolset>v142</PlatformToolset>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'" Label="Configuration">
<ConfigurationType>StaticLibrary</ConfigurationType>
<UseDebugLibraries>true</UseDebugLibraries>
<PlatformToolset>v141</PlatformToolset>
<PlatformToolset>v142</PlatformToolset>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'" Label="Configuration">
<ConfigurationType>StaticLibrary</ConfigurationType>
<UseDebugLibraries>false</UseDebugLibraries>
<WholeProgramOptimization>true</WholeProgramOptimization>
<PlatformToolset>v141</PlatformToolset>
<PlatformToolset>v142</PlatformToolset>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|ARM'" Label="Configuration">
<ConfigurationType>StaticLibrary</ConfigurationType>
<UseDebugLibraries>false</UseDebugLibraries>
<WholeProgramOptimization>true</WholeProgramOptimization>
<PlatformToolset>v141</PlatformToolset>
<PlatformToolset>v142</PlatformToolset>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|ARM64'" Label="Configuration">
<ConfigurationType>StaticLibrary</ConfigurationType>
<UseDebugLibraries>false</UseDebugLibraries>
<WholeProgramOptimization>true</WholeProgramOptimization>
<PlatformToolset>v141</PlatformToolset>
<PlatformToolset>v142</PlatformToolset>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'" Label="Configuration">
<ConfigurationType>StaticLibrary</ConfigurationType>
<UseDebugLibraries>false</UseDebugLibraries>
<WholeProgramOptimization>true</WholeProgramOptimization>
<PlatformToolset>v141</PlatformToolset>
<PlatformToolset>v142</PlatformToolset>
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />
<ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
@@ -153,10 +153,11 @@
<PrecompiledHeader>Use</PrecompiledHeader>
<CompileAsWinRT>false</CompileAsWinRT>
<SDLCheck>true</SDLCheck>
<AdditionalOptions>/Zm250 /await /std:c++17 /permissive- /Zc:twoPhase- %(AdditionalOptions)</AdditionalOptions>
<AdditionalOptions>/Zm250 /await /std:c++17 /permissive- /Zc:twoPhase- /utf-8 %(AdditionalOptions)</AdditionalOptions>
<AdditionalIncludeDirectories>$(SolutionDir)..\src\;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
<WarningLevel>Level4</WarningLevel>
<TreatWarningAsError>true</TreatWarningAsError>
<ForcedIncludeFiles>pch.h</ForcedIncludeFiles>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
@@ -169,10 +170,11 @@
<PrecompiledHeader>Use</PrecompiledHeader>
<CompileAsWinRT>false</CompileAsWinRT>
<SDLCheck>true</SDLCheck>
<AdditionalOptions>/Zm250 /await /std:c++17 /permissive- /Zc:twoPhase- %(AdditionalOptions)</AdditionalOptions>
<AdditionalOptions>/Zm250 /await /std:c++17 /permissive- /Zc:twoPhase- /utf-8 %(AdditionalOptions)</AdditionalOptions>
<AdditionalIncludeDirectories>$(SolutionDir)..\src\;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
<WarningLevel>Level4</WarningLevel>
<TreatWarningAsError>true</TreatWarningAsError>
<ForcedIncludeFiles>pch.h</ForcedIncludeFiles>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
@@ -185,10 +187,11 @@
<PrecompiledHeader>Use</PrecompiledHeader>
<CompileAsWinRT>false</CompileAsWinRT>
<SDLCheck>true</SDLCheck>
<AdditionalOptions>/Zm250 /await /std:c++17 /permissive- /Zc:twoPhase- %(AdditionalOptions)</AdditionalOptions>
<AdditionalOptions>/Zm250 /await /std:c++17 /permissive- /Zc:twoPhase- /utf-8 %(AdditionalOptions)</AdditionalOptions>
<AdditionalIncludeDirectories>$(SolutionDir)..\src\;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
<WarningLevel>Level4</WarningLevel>
<TreatWarningAsError>true</TreatWarningAsError>
<ForcedIncludeFiles>pch.h</ForcedIncludeFiles>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
@@ -201,10 +204,11 @@
<PrecompiledHeader>Use</PrecompiledHeader>
<CompileAsWinRT>false</CompileAsWinRT>
<SDLCheck>true</SDLCheck>
<AdditionalOptions>/Zm250 /await /std:c++17 /permissive- /Zc:twoPhase- %(AdditionalOptions)</AdditionalOptions>
<AdditionalOptions>/Zm250 /await /std:c++17 /permissive- /Zc:twoPhase- /utf-8 %(AdditionalOptions)</AdditionalOptions>
<AdditionalIncludeDirectories>$(SolutionDir)..\src\;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
<WarningLevel>Level4</WarningLevel>
<TreatWarningAsError>true</TreatWarningAsError>
<ForcedIncludeFiles>pch.h</ForcedIncludeFiles>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
@@ -217,11 +221,12 @@
<PrecompiledHeader>Use</PrecompiledHeader>
<CompileAsWinRT>false</CompileAsWinRT>
<SDLCheck>true</SDLCheck>
<AdditionalOptions>/Zm250 /await /std:c++17 /permissive- /Zc:twoPhase- %(AdditionalOptions)</AdditionalOptions>
<AdditionalOptions>/Zm250 /await /std:c++17 /permissive- /Zc:twoPhase- /utf-8 %(AdditionalOptions)</AdditionalOptions>
<PreprocessorDefinitions>_UNICODE;UNICODE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(SolutionDir)..\src\;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
<WarningLevel>Level4</WarningLevel>
<TreatWarningAsError>true</TreatWarningAsError>
<ForcedIncludeFiles>pch.h</ForcedIncludeFiles>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
@@ -234,10 +239,11 @@
<PrecompiledHeader>Use</PrecompiledHeader>
<CompileAsWinRT>false</CompileAsWinRT>
<SDLCheck>true</SDLCheck>
<AdditionalOptions>/Zm250 /await /std:c++17 /permissive- /Zc:twoPhase- %(AdditionalOptions)</AdditionalOptions>
<AdditionalOptions>/Zm250 /await /std:c++17 /permissive- /Zc:twoPhase- /utf-8 %(AdditionalOptions)</AdditionalOptions>
<AdditionalIncludeDirectories>$(SolutionDir)..\src\;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
<WarningLevel>Level4</WarningLevel>
<TreatWarningAsError>true</TreatWarningAsError>
<ForcedIncludeFiles>pch.h</ForcedIncludeFiles>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
@@ -250,10 +256,11 @@
<PrecompiledHeader>Use</PrecompiledHeader>
<CompileAsWinRT>false</CompileAsWinRT>
<SDLCheck>true</SDLCheck>
<AdditionalOptions>/Zm250 /await /std:c++17 /permissive- /Zc:twoPhase- %(AdditionalOptions)</AdditionalOptions>
<AdditionalOptions>/Zm250 /await /std:c++17 /permissive- /Zc:twoPhase- /utf-8 %(AdditionalOptions)</AdditionalOptions>
<AdditionalIncludeDirectories>$(SolutionDir)..\src\;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
<WarningLevel>Level4</WarningLevel>
<TreatWarningAsError>true</TreatWarningAsError>
<ForcedIncludeFiles>pch.h</ForcedIncludeFiles>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
@@ -266,10 +273,11 @@
<PrecompiledHeader>Use</PrecompiledHeader>
<CompileAsWinRT>false</CompileAsWinRT>
<SDLCheck>true</SDLCheck>
<AdditionalOptions>/Zm250 /await /std:c++17 /permissive- /Zc:twoPhase- %(AdditionalOptions)</AdditionalOptions>
<AdditionalOptions>/Zm250 /await /std:c++17 /permissive- /Zc:twoPhase- /utf-8 %(AdditionalOptions)</AdditionalOptions>
<AdditionalIncludeDirectories>$(SolutionDir)..\src\;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
<WarningLevel>Level4</WarningLevel>
<TreatWarningAsError>true</TreatWarningAsError>
<ForcedIncludeFiles>pch.h</ForcedIncludeFiles>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
@@ -278,7 +286,6 @@
</Link>
</ItemDefinitionGroup>
<ItemGroup>
<ClInclude Include="CalcException.h" />
<ClInclude Include="CalculatorHistory.h" />
<ClInclude Include="CalculatorManager.h" />
<ClInclude Include="CalculatorResource.h" />

View File

@@ -1,17 +1,21 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
#include "pch.h"
#include <cassert>
#include "CalculatorHistory.h"
using namespace std;
using namespace CalculationManager;
CalculatorHistory::CalculatorHistory(size_t maxSize) :
m_maxHistorySize(maxSize)
{}
CalculatorHistory::CalculatorHistory(size_t maxSize)
: m_maxHistorySize(maxSize)
{
}
unsigned int CalculatorHistory::AddToHistory(_In_ shared_ptr<CalculatorVector <pair<wstring, int>>> const &tokens, _In_ shared_ptr<CalculatorVector<shared_ptr<IExpressionCommand>>> const &commands, _In_ wstring_view result)
unsigned int CalculatorHistory::AddToHistory(
_In_ shared_ptr<CalculatorVector<pair<wstring, int>>> const& tokens,
_In_ shared_ptr<CalculatorVector<shared_ptr<IExpressionCommand>>> const& commands,
_In_ wstring_view result)
{
unsigned int addedIndex;
wstring generatedExpression;
@@ -31,8 +35,7 @@ unsigned int CalculatorHistory::AddToHistory(_In_ shared_ptr<CalculatorVector <p
return addedIndex;
}
unsigned int CalculatorHistory::AddItem(_In_ shared_ptr<HISTORYITEM> const &spHistoryItem)
unsigned int CalculatorHistory::AddItem(_In_ shared_ptr<HISTORYITEM> const& spHistoryItem)
{
if (m_historyItems.size() >= m_maxHistorySize)
{

View File

@@ -15,10 +15,10 @@ namespace CalculationManager
struct HISTORYITEMVECTOR
{
std::shared_ptr<CalculatorVector <std::pair<std::wstring, int>>> spTokens;
std::shared_ptr<CalculatorVector<std::pair<std::wstring, int>>> spTokens;
std::shared_ptr<CalculatorVector<std::shared_ptr<IExpressionCommand>>> spCommands;
std::wstring expression;
std::wstring result;
std::wstring expression;
std::wstring result;
};
struct HISTORYITEM
@@ -26,19 +26,23 @@ namespace CalculationManager
HISTORYITEMVECTOR historyItemVector;
};
class CalculatorHistory :
public IHistoryDisplay
class CalculatorHistory : public IHistoryDisplay
{
public:
CalculatorHistory(const size_t maxSize);
unsigned int AddToHistory(_In_ std::shared_ptr<CalculatorVector <std::pair<std::wstring, int>>> const &spTokens, _In_ std::shared_ptr<CalculatorVector<std::shared_ptr<IExpressionCommand>>> const &spCommands, std::wstring_view result);
unsigned int AddToHistory(
_In_ std::shared_ptr<CalculatorVector<std::pair<std::wstring, int>>> const& spTokens,
_In_ std::shared_ptr<CalculatorVector<std::shared_ptr<IExpressionCommand>>> const& spCommands,
std::wstring_view result);
std::vector<std::shared_ptr<HISTORYITEM>> const& GetHistory();
std::shared_ptr<HISTORYITEM> const& GetHistoryItem(unsigned int uIdx);
void ClearHistory();
unsigned int AddItem(_In_ std::shared_ptr<HISTORYITEM> const &spHistoryItem);
unsigned int AddItem(_In_ std::shared_ptr<HISTORYITEM> const& spHistoryItem);
bool RemoveItem(unsigned int uIdx);
const size_t MaxHistorySize() const { return m_maxHistorySize; }
size_t MaxHistorySize() const
{
return m_maxHistorySize;
}
~CalculatorHistory(void);
private:

View File

@@ -1,7 +1,7 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
#include "pch.h"
#include <climits> // for UCHAR_MAX
#include "Header Files/CalcEngine.h"
#include "CalculatorManager.h"
#include "CalculatorResource.h"
@@ -12,27 +12,27 @@ using namespace CalcEngine;
static constexpr size_t MAX_HISTORY_ITEMS = 20;
static constexpr size_t SERIALIZED_NUMBER_MINSIZE = 3;
#ifndef _MSC_VER
#define __pragma(x)
#endif
// Converts Memory Command enum value to unsigned char,
// while ignoring Warning C4309: 'conversion' : truncation of constant value
#define MEMORY_COMMAND_TO_UNSIGNED_CHAR(c)\
__pragma(warning(push))\
__pragma(warning(disable: 4309))\
static_cast<unsigned char>(c)\
__pragma(warning(pop))
#define MEMORY_COMMAND_TO_UNSIGNED_CHAR(c) __pragma(warning(push)) __pragma(warning(disable : 4309)) static_cast<unsigned char>(c) __pragma(warning(pop))
namespace CalculationManager
{
CalculatorManager::CalculatorManager(_In_ ICalcDisplay* displayCallback, _In_ IResourceProvider* resourceProvider) :
m_displayCallback(displayCallback),
m_currentCalculatorEngine(nullptr),
m_resourceProvider(resourceProvider),
m_inHistoryItemLoadMode(false),
m_persistedPrimaryValue(),
m_isExponentialFormat(false),
m_currentDegreeMode(Command::CommandNULL),
m_savedDegreeMode(Command::CommandDEG),
m_pStdHistory(new CalculatorHistory(MAX_HISTORY_ITEMS)),
m_pSciHistory(new CalculatorHistory(MAX_HISTORY_ITEMS))
CalculatorManager::CalculatorManager(_In_ ICalcDisplay* displayCallback, _In_ IResourceProvider* resourceProvider)
: m_displayCallback(displayCallback)
, m_currentCalculatorEngine(nullptr)
, m_resourceProvider(resourceProvider)
, m_inHistoryItemLoadMode(false)
, m_persistedPrimaryValue()
, m_isExponentialFormat(false)
, m_currentDegreeMode(Command::CommandNULL)
, m_savedDegreeMode(Command::CommandDEG)
, m_pStdHistory(new CalculatorHistory(MAX_HISTORY_ITEMS))
, m_pSciHistory(new CalculatorHistory(MAX_HISTORY_ITEMS))
{
CCalcEngine::InitialOneTimeOnlySetup(*m_resourceProvider);
}
@@ -89,7 +89,9 @@ namespace CalculationManager
/// Used to set the expression display value on ViewModel
/// </summary>
/// <param name="expressionString">wstring representing expression to be displayed</param>
void CalculatorManager::SetExpressionDisplay(_Inout_ shared_ptr<CalculatorVector<pair<wstring, int>>> const &tokens, _Inout_ shared_ptr<CalculatorVector<shared_ptr<IExpressionCommand>>> const &commands)
void CalculatorManager::SetExpressionDisplay(
_Inout_ shared_ptr<CalculatorVector<pair<wstring, int>>> const& tokens,
_Inout_ shared_ptr<CalculatorVector<shared_ptr<IExpressionCommand>>> const& commands)
{
if (!m_inHistoryItemLoadMode)
{
@@ -111,9 +113,9 @@ namespace CalculationManager
/// Callback from the engine
/// </summary>
/// <param name="parenthesisCount">string containing the parenthesis count</param>
void CalculatorManager::SetParenDisplayText(const wstring& parenthesisCount)
void CalculatorManager::SetParenthesisNumber(_In_ unsigned int parenthesisCount)
{
m_displayCallback->SetParenDisplayText(parenthesisCount);
m_displayCallback->SetParenthesisNumber(parenthesisCount);
}
/// <summary>
@@ -165,7 +167,8 @@ namespace CalculationManager
{
if (!m_standardCalculatorEngine)
{
m_standardCalculatorEngine = make_unique<CCalcEngine>(false /* Respect Order of Operations */, false /* Set to Integer Mode */, m_resourceProvider, this, m_pStdHistory);
m_standardCalculatorEngine =
make_unique<CCalcEngine>(false /* Respect Order of Operations */, false /* Set to Integer Mode */, m_resourceProvider, this, m_pStdHistory);
}
m_currentCalculatorEngine = m_standardCalculatorEngine.get();
@@ -183,7 +186,8 @@ namespace CalculationManager
{
if (!m_scientificCalculatorEngine)
{
m_scientificCalculatorEngine = make_unique<CCalcEngine>(true /* Respect Order of Operations */, false /* Set to Integer Mode */, m_resourceProvider, this, m_pSciHistory);
m_scientificCalculatorEngine =
make_unique<CCalcEngine>(true /* Respect Order of Operations */, false /* Set to Integer Mode */, m_resourceProvider, this, m_pSciHistory);
}
m_currentCalculatorEngine = m_scientificCalculatorEngine.get();
@@ -198,9 +202,10 @@ namespace CalculationManager
/// </summary>
void CalculatorManager::SetProgrammerMode()
{
if(!m_programmerCalculatorEngine)
if (!m_programmerCalculatorEngine)
{
m_programmerCalculatorEngine = make_unique<CCalcEngine>(true /* Respect Order of Operations */, true /* Set to Integer Mode */, m_resourceProvider, this, nullptr);
m_programmerCalculatorEngine =
make_unique<CCalcEngine>(true /* Respect Order of Operations */, true /* Set to Integer Mode */, m_resourceProvider, this, nullptr);
}
m_currentCalculatorEngine = m_programmerCalculatorEngine.get();
@@ -209,7 +214,6 @@ namespace CalculationManager
m_currentCalculatorEngine->ChangePrecision(static_cast<int>(CalculatorPrecision::ProgrammerModePrecision));
}
/// <summary>
/// Send command to the Calc Engine
/// Cast Command Enum to OpCode.
@@ -220,8 +224,8 @@ namespace CalculationManager
{
// When the expression line is cleared, we save the current state, which includes,
// primary display, memory, and degree mode
if (command == Command::CommandCLEAR || command == Command::CommandEQU
|| command == Command::ModeBasic || command == Command::ModeScientific || command == Command::ModeProgrammer)
if (command == Command::CommandCLEAR || command == Command::CommandEQU || command == Command::ModeBasic || command == Command::ModeScientific
|| command == Command::ModeProgrammer)
{
switch (command)
{
@@ -244,8 +248,6 @@ namespace CalculationManager
{
m_savedCommands.push_back(MapCommandForSerialize(command));
}
this->SerializePrimaryDisplay();
this->SerializeMemory();
m_savedDegreeMode = m_currentDegreeMode;
return;
}
@@ -330,47 +332,6 @@ namespace CalculationManager
return commandToLoad;
}
/// <summary>
/// Return saved degree mode which is saved when last time the expression was cleared.
/// </summary>
Command CalculatorManager::SerializeSavedDegreeMode()
{
return m_savedDegreeMode;
}
void CalculatorManager::SerializePrimaryDisplay()
{
m_savedPrimaryValue.clear();
m_currentCalculatorEngine->ProcessCommand(IDC_STORE);
auto memoryObject = m_currentCalculatorEngine->PersistedMemObject();
if (memoryObject != nullptr)
{
m_savedPrimaryValue = SerializeRational(*memoryObject);
}
}
/// <summary>
/// Return serialized primary display that is saved when the expression line was cleared.
/// </summary>
vector<long> CalculatorManager::GetSerializedPrimaryDisplay()
{
return m_savedPrimaryValue;
}
/// <summary>
/// DeSerialize the primary display from vector of long
/// </summary>
/// <param name = "serializedPrimaryDisplay">Serialized Rational of primary display</param>
void CalculatorManager::DeSerializePrimaryDisplay(const vector<long> &serializedPrimaryDisplay)
{
if (serializedPrimaryDisplay.empty())
{
return;
}
m_persistedPrimaryValue = DeSerializeRational(serializedPrimaryDisplay.begin());
this->LoadPersistedPrimaryValue();
}
/// <summary>
/// Load the persisted value that is saved in memory of CalcEngine
/// </summary>
@@ -380,112 +341,6 @@ namespace CalculationManager
m_currentCalculatorEngine->ProcessCommand(IDC_RECALL);
}
/// <summary>
/// Serialize the Memory to vector of long
/// </summary>
/// <return type = "std::vector<long>">Serialized Rational of memory</return>
void CalculatorManager::SerializeMemory()
{
m_serializedMemory.clear();
for (auto const& memoryItem : m_memorizedNumbers)
{
auto serialMem = SerializeRational(memoryItem);
m_serializedMemory.insert(m_serializedMemory.end(), serialMem.begin(), serialMem.end());
}
}
vector<long> CalculatorManager::GetSerializedMemory()
{
return m_serializedMemory;
}
/// <summary>
/// DeSerialize the Memory from vector of long
/// </summary>
/// <param name = "serializedMemory">Serialized Rational of memory</param>
void CalculatorManager::DeSerializeMemory(const vector<long> &serializedMemory)
{
vector<long>::const_iterator itr = serializedMemory.begin();
while (itr != serializedMemory.end())
{
Rational memoryItem = DeSerializeRational(itr);
auto lengthMemoryItem = (2 * SERIALIZED_NUMBER_MINSIZE) + memoryItem.P().Mantissa().size() + memoryItem.Q().Mantissa().size();
m_memorizedNumbers.push_back(memoryItem);
itr += lengthMemoryItem;
}
this->SetMemorizedNumbersString();
}
/// <summary>
/// Return the commands saved since the expression has been cleared.
/// </summary>
vector<unsigned char> CalculatorManager::SerializeCommands()
{
return m_savedCommands;
}
/// <summary>
/// Replay the serialized commands
/// </summary>
/// <param name = "serializedData">Serialized commands</param>
void CalculatorManager::DeSerializeCommands(_In_ const vector<unsigned char>& serializedData)
{
m_savedCommands.clear();
for (auto commandItr = serializedData.begin(); commandItr != serializedData.end(); ++commandItr)
{
if (*commandItr >= MEMORY_COMMAND_TO_UNSIGNED_CHAR(MemoryCommand::MemorizeNumber) &&
*commandItr <= MEMORY_COMMAND_TO_UNSIGNED_CHAR(MemoryCommand::MemorizedNumberClearAll))
{
// MemoryCommands(which have values above 255) are pushed on m_savedCommands upon casting to unsigned char.
// SerializeCommands uses m_savedCommands, which is then used in DeSerializeCommands.
// Hence, a simple cast to MemoryCommand is not sufficient.
MemoryCommand memoryCommand = static_cast<MemoryCommand>(*commandItr + UCHAR_MAX + 1);
unsigned int indexOfMemory = 0;
switch (memoryCommand)
{
case MemoryCommand::MemorizeNumber:
this->MemorizeNumber();
break;
case MemoryCommand::MemorizedNumberLoad:
if (commandItr + 1 == serializedData.end())
{
throw out_of_range("Expecting index of memory, data ended prematurely");
}
indexOfMemory = *(++commandItr);
this->MemorizedNumberLoad(indexOfMemory);
break;
case MemoryCommand::MemorizedNumberAdd:
if (commandItr + 1 == serializedData.end())
{
throw out_of_range("Expecting index of memory, data ended prematurely");
}
indexOfMemory = *(++commandItr);
this->MemorizedNumberAdd(indexOfMemory);
break;
case MemoryCommand::MemorizedNumberSubtract:
if (commandItr + 1 == serializedData.end())
{
throw out_of_range("Expecting index of memory, data ended prematurely");
}
indexOfMemory = *(++commandItr);
this->MemorizedNumberSubtract(indexOfMemory);
break;
case MemoryCommand::MemorizedNumberClearAll:
this->MemorizedNumberClearAll();
break;
default:
break;
}
}
else
{
this->SendCommand(static_cast<Command>(MapCommandForDeSerialize(*commandItr)));
}
}
}
/// <summary>
/// Memorize the current displayed value
/// Notify the client with new the new memorize value vector
@@ -622,10 +477,10 @@ namespace CalculationManager
}
/// <summary>
/// Helper function that selects a memory from the vector and set it to CCalcEngine
/// Saved RAT number needs to be copied and passed in, as CCalcEngine destroyed the passed in RAT
/// </summary>
/// <param name="indexOfMemory">Index of the target memory</param>
/// Helper function that selects a memory from the vector and set it to CCalcEngine
/// Saved RAT number needs to be copied and passed in, as CCalcEngine destroyed the passed in RAT
/// </summary>
/// <param name="indexOfMemory">Index of the target memory</param>
void CalculatorManager::MemorizedNumberSelect(_In_ unsigned int indexOfMemory)
{
if (m_currentCalculatorEngine->FInErrorState())
@@ -673,9 +528,7 @@ namespace CalculationManager
vector<shared_ptr<HISTORYITEM>> const& CalculatorManager::GetHistoryItems(_In_ CALCULATOR_MODE mode)
{
return (mode == CM_STD) ?
m_pStdHistory->GetHistory() :
m_pSciHistory->GetHistory();
return (mode == CM_STD) ? m_pStdHistory->GetHistory() : m_pSciHistory->GetHistory();
}
shared_ptr<HISTORYITEM> const& CalculatorManager::GetHistoryItem(_In_ unsigned int uIdx)

View File

@@ -63,7 +63,6 @@ namespace CalculationManager
// For persistence
std::vector<unsigned char> m_savedCommands;
std::vector<long> m_savedPrimaryValue;
std::vector<long> m_serializedMemory;
std::vector<long> m_currentSerializedMemory;
Command m_currentDegreeMode;
Command m_savedDegreeMode;
@@ -91,17 +90,18 @@ namespace CalculationManager
// ICalcDisplay
void SetPrimaryDisplay(_In_ const std::wstring& displayString, _In_ bool isError) override;
void SetIsInError(bool isError) override;
void SetExpressionDisplay(_Inout_ std::shared_ptr<CalculatorVector<std::pair<std::wstring, int>>> const &tokens, _Inout_ std::shared_ptr<CalculatorVector<std::shared_ptr<IExpressionCommand>>> const &commands) override;
void SetExpressionDisplay(
_Inout_ std::shared_ptr<CalculatorVector<std::pair<std::wstring, int>>> const& tokens,
_Inout_ std::shared_ptr<CalculatorVector<std::shared_ptr<IExpressionCommand>>> const& commands) override;
void SetMemorizedNumbers(_In_ const std::vector<std::wstring>& memorizedNumbers) override;
void OnHistoryItemAdded(_In_ unsigned int addedItemIndex) override;
void SetParenDisplayText(const std::wstring& parenthesisCount) override;
void SetParenthesisNumber(_In_ unsigned int parenthesisCount) override;
void OnNoRightParenAdded() override;
void DisplayPasteError();
void MaxDigitsReached() override;
void BinaryOperatorReceived() override;
void MemoryItemChanged(unsigned int indexOfMemory) override;
CalculatorManager(ICalcDisplay* displayCallback, IResourceProvider* resourceProvider);
~CalculatorManager();
@@ -110,15 +110,6 @@ namespace CalculationManager
void SetScientificMode();
void SetProgrammerMode();
void SendCommand(_In_ Command command);
std::vector<unsigned char> SerializeCommands();
void DeSerializeCommands(_In_ const std::vector<unsigned char>& serializedData);
void SerializeMemory();
std::vector<long> GetSerializedMemory();
void DeSerializeMemory(const std::vector<long> &serializedMemory);
void SerializePrimaryDisplay();
std::vector<long> GetSerializedPrimaryDisplay();
void DeSerializePrimaryDisplay(const std::vector<long> &serializedPrimaryDisplay);
Command SerializeSavedDegreeMode();
void MemorizeNumber();
void MemorizedNumberLoad(_In_ unsigned int);
@@ -128,7 +119,10 @@ namespace CalculationManager
void MemorizedNumberClearAll();
bool IsEngineRecording();
std::vector<unsigned char> GetSavedCommands(){ return m_savedCommands; }
std::vector<unsigned char> GetSavedCommands()
{
return m_savedCommands;
}
void SetRadix(RADIX_TYPE iRadixType);
void SetMemorizedNumbersString();
std::wstring GetResultForRadix(uint32_t radix, int32_t precision);
@@ -141,7 +135,10 @@ namespace CalculationManager
std::shared_ptr<HISTORYITEM> const& GetHistoryItem(_In_ unsigned int uIdx);
bool RemoveHistoryItem(_In_ unsigned int uIdx);
void ClearHistory();
size_t MaxHistorySize() const { return m_pHistory->MaxHistorySize(); }
size_t MaxHistorySize() const
{
return m_pHistory->MaxHistorySize();
}
CalculationManager::Command GetCurrentDegreeMode();
void SetHistory(_In_ CALCULATOR_MODE eMode, _In_ std::vector<std::shared_ptr<HISTORYITEM>> const& history);
void SetInHistoryItemLoadMode(_In_ bool isHistoryItemLoadMode);

View File

@@ -8,7 +8,9 @@ namespace CalculationManager
class IResourceProvider
{
public:
virtual ~IResourceProvider() { }
virtual ~IResourceProvider()
{
}
// Should return a string from the resource table for strings used
// by the calculation engine. The strings that must be defined

View File

@@ -1,29 +1,33 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
#pragma once
#include <string>
#include <vector>
#include "winerror_cross_platform.h"
#include "Ratpack/CalcErr.h"
#include <stdexcept> // for std::out_of_range
#include "sal_cross_platform.h" // for SAL
template <typename TType>
class CalculatorVector
{
public:
ResultCode GetAt(_In_opt_ unsigned int index, _Out_ TType *item)
ResultCode GetAt(_In_opt_ unsigned int index, _Out_ TType* item)
{
ResultCode hr = S_OK;
try
{
*item = m_vector.at(index);
}
catch (const std::out_of_range& /*ex*/)
{
hr = E_BOUNDS;
return E_BOUNDS;
}
return hr;
return S_OK;
}
ResultCode GetSize(_Out_ unsigned int *size)
ResultCode GetSize(_Out_ unsigned int* size)
{
*size = static_cast<unsigned>(m_vector.size());
return S_OK;
@@ -31,35 +35,32 @@ public:
ResultCode SetAt(_In_ unsigned int index, _In_opt_ TType item)
{
ResultCode hr = S_OK;
try
{
m_vector[index] = item;
}
catch (const std::out_of_range& /*ex*/)
{
hr = E_BOUNDS;
return E_BOUNDS;
}
return hr;
return S_OK;
}
ResultCode RemoveAt(_In_ unsigned int index)
{
ResultCode hr = S_OK;
if (index < m_vector.size())
{
m_vector.erase(m_vector.begin() + index);
}
else
{
hr = E_BOUNDS;
return E_BOUNDS;
}
return hr;
return S_OK;
}
ResultCode InsertAt(_In_ unsigned int index, _In_ TType item)
{
ResultCode hr = S_OK;
try
{
auto iter = m_vector.begin() + index;
@@ -67,14 +68,13 @@ public:
}
catch (const std::bad_alloc& /*ex*/)
{
hr = E_OUTOFMEMORY;
return E_OUTOFMEMORY;
}
return hr;
return S_OK;
}
ResultCode Truncate(_In_ unsigned int index)
{
ResultCode hr = S_OK;
if (index < m_vector.size())
{
auto startIter = m_vector.begin() + index;
@@ -82,23 +82,22 @@ public:
}
else
{
hr = E_BOUNDS;
return E_BOUNDS;
}
return hr;
return S_OK;
}
ResultCode Append(_In_opt_ TType item)
{
ResultCode hr = S_OK;
try
{
m_vector.push_back(item);
}
catch (const std::bad_alloc& /*ex*/)
{
hr = E_OUTOFMEMORY;
return E_OUTOFMEMORY;
}
return hr;
return S_OK;
}
ResultCode RemoveAtEnd()
@@ -115,12 +114,12 @@ public:
ResultCode GetString(_Out_ std::wstring* expression)
{
ResultCode hr = S_OK;
unsigned int nTokens = 0;
std::pair <std::wstring, int> currentPair;
hr = this->GetSize(&nTokens);
ResultCode hr = this->GetSize(&nTokens);
if (SUCCEEDED(hr))
{
std::pair<std::wstring, int> currentPair;
for (unsigned int i = 0; i < nTokens; i++)
{
hr = this->GetAt(i, &currentPair);

View File

@@ -1,4 +1,4 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
#pragma once
@@ -7,9 +7,19 @@ namespace UnitConversionManager
{
enum class Command
{
Zero, One, Two, Three, Four, Five, Six, Seven, Eight, Nine,
Zero,
One,
Two,
Three,
Four,
Five,
Six,
Seven,
Eight,
Nine,
Decimal,
Negate, Backspace,
Negate,
Backspace,
Clear,
Reset,
None
@@ -20,9 +30,19 @@ namespace CurrencyConversionManager
{
enum class Command
{
Zero, One, Two, Three, Four, Five, Six, Seven, Eight, Nine,
Zero,
One,
Two,
Three,
Four,
Five,
Six,
Seven,
Eight,
Nine,
Decimal,
Negate, Backspace,
Negate,
Backspace,
Clear,
None
};
@@ -73,7 +93,7 @@ namespace CalculationManager
CommandROOT = 96,
CommandPWR = 97,
CommandCHOP = 98, // Unary operators must be between CommandCHOP and CommandEQU
CommandCHOP = 98, // Unary operators must be between CommandCHOP and CommandEQU
CommandROL = 99,
CommandROR = 100,
CommandCOM = 101,
@@ -85,7 +105,6 @@ namespace CalculationManager
CommandCOSH = 106,
CommandTANH = 107,
CommandLN = 108,
CommandLOG = 109,
CommandSQRT = 110,
@@ -94,8 +113,8 @@ namespace CalculationManager
CommandFAC = 113,
CommandREC = 114,
CommandDMS = 115,
CommandCUBEROOT = 116, // x ^ 1/3
CommandPOW10 = 117, // 10 ^ x
CommandCUBEROOT = 116, // x ^ 1/3
CommandPOW10 = 117, // 10 ^ x
CommandPERCENT = 118,
CommandFE = 119,
@@ -113,7 +132,7 @@ namespace CalculationManager
CommandOPENP = 128,
CommandCLOSEP = 129,
Command0 = 130, // The controls for 0 through F must be consecutive and in order
Command0 = 130, // The controls for 0 through F must be consecutive and in order
Command1 = 131,
Command2 = 132,
Command3 = 133,
@@ -128,7 +147,7 @@ namespace CalculationManager
CommandC = 142,
CommandD = 143,
CommandE = 144,
CommandF = 145, // this is last control ID which must match the string table
CommandF = 145, // this is last control ID which must match the string table
CommandINV = 146,
CommandSET_RESULT = 147,

View File

@@ -1,7 +1,7 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
#include "pch.h"
#include <string>
#include "Header Files/CCommand.h"
#include "CalculatorVector.h"
#include "ExpressionCommand.h"
@@ -13,8 +13,10 @@ constexpr wchar_t chNegate = L'-';
constexpr wchar_t chExp = L'e';
constexpr wchar_t chPlus = L'+';
CParentheses::CParentheses(_In_ int command) :m_command(command)
{}
CParentheses::CParentheses(_In_ int command)
: m_command(command)
{
}
int CParentheses::GetCommand() const
{
@@ -26,7 +28,7 @@ CalculationManager::CommandType CParentheses::GetCommandType() const
return CalculationManager::CommandType::Parentheses;
}
void CParentheses::Accept(_In_ ISerializeCommandVisitor &commandVisitor)
void CParentheses::Accept(_In_ ISerializeCommandVisitor& commandVisitor)
{
commandVisitor.Visit(*this);
}
@@ -44,7 +46,7 @@ CUnaryCommand::CUnaryCommand(int command1, int command2)
m_command->Append(command2);
}
const shared_ptr<CalculatorVector<int>> & CUnaryCommand::GetCommands() const
const shared_ptr<CalculatorVector<int>>& CUnaryCommand::GetCommands() const
{
return m_command;
}
@@ -67,13 +69,15 @@ void CUnaryCommand::SetCommands(int command1, int command2)
m_command->Append(command2);
}
void CUnaryCommand::Accept(_In_ ISerializeCommandVisitor &commandVisitor)
void CUnaryCommand::Accept(_In_ ISerializeCommandVisitor& commandVisitor)
{
commandVisitor.Visit(*this);
}
CBinaryCommand::CBinaryCommand(int command) :m_command(command)
{}
CBinaryCommand::CBinaryCommand(int command)
: m_command(command)
{
}
void CBinaryCommand::SetCommand(int command)
{
@@ -90,19 +94,20 @@ CalculationManager::CommandType CBinaryCommand::GetCommandType() const
return CalculationManager::CommandType::BinaryCommand;
}
void CBinaryCommand::Accept(_In_ ISerializeCommandVisitor &commandVisitor)
void CBinaryCommand::Accept(_In_ ISerializeCommandVisitor& commandVisitor)
{
commandVisitor.Visit(*this);
}
COpndCommand::COpndCommand(shared_ptr<CalculatorVector<int>> const &commands, bool fNegative, bool fDecimal, bool fSciFmt) :
m_commands(commands),
m_fNegative(fNegative),
m_fSciFmt(fSciFmt),
m_fDecimal(fDecimal),
m_fInitialized(false),
m_value{}
{}
COpndCommand::COpndCommand(shared_ptr<CalculatorVector<int>> const& commands, bool fNegative, bool fDecimal, bool fSciFmt)
: m_commands(commands)
, m_fNegative(fNegative)
, m_fSciFmt(fSciFmt)
, m_fDecimal(fDecimal)
, m_fInitialized(false)
, m_value{}
{
}
void COpndCommand::Initialize(Rational const& rat)
{
@@ -110,7 +115,7 @@ void COpndCommand::Initialize(Rational const& rat)
m_fInitialized = true;
}
const shared_ptr<CalculatorVector<int>> & COpndCommand::GetCommands() const
const shared_ptr<CalculatorVector<int>>& COpndCommand::GetCommands() const
{
return m_commands;
}
@@ -213,7 +218,7 @@ void COpndCommand::ClearAllAndAppendCommand(CalculationManager::Command command)
m_fDecimal = false;
}
const wstring & COpndCommand::GetToken(wchar_t decimalSymbol)
const wstring& COpndCommand::GetToken(wchar_t decimalSymbol)
{
static const wchar_t chZero = L'0';
@@ -299,7 +304,7 @@ wstring COpndCommand::GetString(uint32_t radix, int32_t precision)
return result;
}
void COpndCommand::Accept(_In_ ISerializeCommandVisitor &commandVisitor)
void COpndCommand::Accept(_In_ ISerializeCommandVisitor& commandVisitor)
{
commandVisitor.Visit(*this);
}

View File

@@ -12,7 +12,7 @@ public:
CParentheses(_In_ int command);
int GetCommand() const override;
CalculationManager::CommandType GetCommandType() const override;
void Accept(_In_ ISerializeCommandVisitor &commandVisitor) override;
void Accept(_In_ ISerializeCommandVisitor& commandVisitor) override;
private:
int m_command;
@@ -23,11 +23,11 @@ class CUnaryCommand final : public IUnaryCommand
public:
CUnaryCommand(int command);
CUnaryCommand(int command1, int command2);
const std::shared_ptr<CalculatorVector<int>> & GetCommands() const override;
const std::shared_ptr<CalculatorVector<int>>& GetCommands() const override;
CalculationManager::CommandType GetCommandType() const override;
void SetCommand(int command) override;
void SetCommands(int command1, int command2) override;
void Accept(_In_ ISerializeCommandVisitor &commandVisitor) override;
void Accept(_In_ ISerializeCommandVisitor& commandVisitor) override;
private:
std::shared_ptr<CalculatorVector<int>> m_command;
@@ -40,7 +40,7 @@ public:
void SetCommand(int command) override;
int GetCommand() const override;
CalculationManager::CommandType GetCommandType() const override;
void Accept(_In_ ISerializeCommandVisitor &commandVisitor) override;
void Accept(_In_ ISerializeCommandVisitor& commandVisitor) override;
private:
int m_command;
@@ -49,14 +49,10 @@ private:
class COpndCommand final : public IOpndCommand
{
public:
COpndCommand(
std::shared_ptr<CalculatorVector<int>> const &commands,
bool fNegative,
bool fDecimal,
bool fSciFmt);
COpndCommand(std::shared_ptr<CalculatorVector<int>> const& commands, bool fNegative, bool fDecimal, bool fSciFmt);
void Initialize(CalcEngine::Rational const& rat);
const std::shared_ptr<CalculatorVector<int>> & GetCommands() const override;
const std::shared_ptr<CalculatorVector<int>>& GetCommands() const override;
void SetCommands(std::shared_ptr<CalculatorVector<int>> const& commands) override;
void AppendCommand(int command) override;
void ToggleSign() override;
@@ -64,9 +60,9 @@ public:
bool IsNegative() const override;
bool IsSciFmt() const override;
bool IsDecimalPresent() const override;
const std::wstring & GetToken(wchar_t decimalSymbol) override;
const std::wstring& GetToken(wchar_t decimalSymbol) override;
CalculationManager::CommandType GetCommandType() const override;
void Accept(_In_ ISerializeCommandVisitor &commandVisitor) override;
void Accept(_In_ ISerializeCommandVisitor& commandVisitor) override;
std::wstring GetString(uint32_t radix, int32_t precision);
private:
@@ -83,8 +79,8 @@ private:
class ISerializeCommandVisitor
{
public:
virtual void Visit(_In_ COpndCommand &opndCmd) = 0;
virtual void Visit(_In_ CUnaryCommand &unaryCmd) = 0;
virtual void Visit(_In_ CBinaryCommand &binaryCmd) = 0;
virtual void Visit(_In_ CParentheses &paraCmd) = 0;
virtual void Visit(_In_ COpndCommand& opndCmd) = 0;
virtual void Visit(_In_ CUnaryCommand& unaryCmd) = 0;
virtual void Visit(_In_ CBinaryCommand& binaryCmd) = 0;
virtual void Visit(_In_ CParentheses& paraCmd) = 0;
};

View File

@@ -1,7 +1,9 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
#pragma once
#include <memory> // for std::shared_ptr
#include "CalculatorVector.h"
#include "Command.h"
@@ -11,7 +13,7 @@ class IExpressionCommand
{
public:
virtual CalculationManager::CommandType GetCommandType() const = 0;
virtual void Accept(_In_ ISerializeCommandVisitor &commandVisitor) = 0;
virtual void Accept(_In_ ISerializeCommandVisitor& commandVisitor) = 0;
};
class IOperatorCommand : public IExpressionCommand
@@ -23,7 +25,7 @@ public:
class IUnaryCommand : public IOperatorCommand
{
public:
virtual const std::shared_ptr<CalculatorVector<int>> & GetCommands() const = 0;
virtual const std::shared_ptr<CalculatorVector<int>>& GetCommands() const = 0;
virtual void SetCommands(int command1, int command2) = 0;
};
@@ -37,14 +39,14 @@ public:
class IOpndCommand : public IExpressionCommand
{
public:
virtual const std::shared_ptr<CalculatorVector<int>> & GetCommands() const= 0;
virtual const std::shared_ptr<CalculatorVector<int>>& GetCommands() const = 0;
virtual void AppendCommand(int command) = 0;
virtual void ToggleSign() = 0;
virtual void RemoveFromEnd() = 0;
virtual bool IsNegative() const = 0;
virtual bool IsSciFmt() const = 0;
virtual bool IsDecimalPresent() const = 0;
virtual const std::wstring & GetToken(wchar_t decimalSymbol) = 0;
virtual const std::wstring& GetToken(wchar_t decimalSymbol) = 0;
virtual void SetCommands(std::shared_ptr<CalculatorVector<int>> const& commands) = 0;
};

View File

@@ -13,36 +13,37 @@
*
\****************************************************************************/
#pragma once
// The following are the valid id's which can be passed to CCalcEngine::ProcessCommand
#define IDM_HEX 313
#define IDM_DEC 314
#define IDM_OCT 315
#define IDM_BIN 316
#define IDM_QWORD 317
#define IDM_DWORD 318
#define IDM_WORD 319
#define IDM_BYTE 320
#define IDM_DEG 321
#define IDM_RAD 322
#define IDM_GRAD 323
#define IDM_DEGREES 324
#define IDM_HEX 313
#define IDM_DEC 314
#define IDM_OCT 315
#define IDM_BIN 316
#define IDM_QWORD 317
#define IDM_DWORD 318
#define IDM_WORD 319
#define IDM_BYTE 320
#define IDM_DEG 321
#define IDM_RAD 322
#define IDM_GRAD 323
#define IDM_DEGREES 324
#define IDC_HEX IDM_HEX
#define IDC_DEC IDM_DEC
#define IDC_OCT IDM_OCT
#define IDC_BIN IDM_BIN
#define IDC_HEX IDM_HEX
#define IDC_DEC IDM_DEC
#define IDC_OCT IDM_OCT
#define IDC_BIN IDM_BIN
#define IDC_DEG IDM_DEG
#define IDC_RAD IDM_RAD
#define IDC_GRAD IDM_GRAD
#define IDC_DEGREES IDM_DEGREES
#define IDC_QWORD IDM_QWORD
#define IDC_DWORD IDM_DWORD
#define IDC_WORD IDM_WORD
#define IDC_BYTE IDM_BYTE
#define IDC_DEG IDM_DEG
#define IDC_RAD IDM_RAD
#define IDC_GRAD IDM_GRAD
#define IDC_DEGREES IDM_DEGREES
#define IDC_QWORD IDM_QWORD
#define IDC_DWORD IDM_DWORD
#define IDC_WORD IDM_WORD
#define IDC_BYTE IDM_BYTE
// Key IDs:
// These id's must be consecutive from IDC_FIRSTCONTROL to IDC_LASTCONTROL.
@@ -53,162 +54,158 @@
// Find the string id for that control from the rc file
// Now define the control's id as IDC_FRISTCONTROL+stringID(IDC_ST_AVE)
#define IDC_FIRSTCONTROL IDC_SIGN
#define IDC_SIGN 80
#define IDC_CLEAR 81
#define IDC_CENTR 82
#define IDC_BACK 83
#define IDC_SIGN 80
#define IDC_CLEAR 81
#define IDC_CENTR 82
#define IDC_BACK 83
#define IDC_PNT 84
#define IDC_PNT 84
// Hole 85
#define IDC_AND 86 // Binary operators must be between IDC_AND and IDC_PWR
#define IDC_OR 87
#define IDC_XOR 88
#define IDC_LSHF 89
#define IDC_RSHF 90
#define IDC_DIV 91
#define IDC_MUL 92
#define IDC_ADD 93
#define IDC_SUB 94
#define IDC_MOD 95
#define IDC_ROOT 96
#define IDC_PWR 97
#define IDC_AND 86 // Binary operators must be between IDC_AND and IDC_PWR
#define IDC_OR 87
#define IDC_XOR 88
#define IDC_LSHF 89
#define IDC_RSHF 90
#define IDC_DIV 91
#define IDC_MUL 92
#define IDC_ADD 93
#define IDC_SUB 94
#define IDC_MOD 95
#define IDC_ROOT 96
#define IDC_PWR 97
#define IDC_UNARYFIRST IDC_CHOP
#define IDC_CHOP 98 // Unary operators must be between IDC_CHOP and IDC_EQU
#define IDC_ROL 99
#define IDC_ROR 100
#define IDC_COM 101
#define IDC_SIN 102
#define IDC_COS 103
#define IDC_TAN 104
#define IDC_UNARYFIRST IDC_CHOP
#define IDC_CHOP 98 // Unary operators must be between IDC_CHOP and IDC_EQU
#define IDC_ROL 99
#define IDC_ROR 100
#define IDC_COM 101
#define IDC_SIN 102
#define IDC_COS 103
#define IDC_TAN 104
#define IDC_SINH 105
#define IDC_COSH 106
#define IDC_TANH 107
#define IDC_SINH 105
#define IDC_COSH 106
#define IDC_TANH 107
#define IDC_LN 108
#define IDC_LOG 109
#define IDC_SQRT 110
#define IDC_SQR 111
#define IDC_CUB 112
#define IDC_FAC 113
#define IDC_REC 114
#define IDC_DMS 115
#define IDC_CUBEROOT 116 // x ^ 1/3
#define IDC_POW10 117 // 10 ^ x
#define IDC_PERCENT 118
#define IDC_LN 108
#define IDC_LOG 109
#define IDC_SQRT 110
#define IDC_SQR 111
#define IDC_CUB 112
#define IDC_FAC 113
#define IDC_REC 114
#define IDC_DMS 115
#define IDC_CUBEROOT 116 // x ^ 1/3
#define IDC_POW10 117 // 10 ^ x
#define IDC_PERCENT 118
#define IDC_UNARYLAST IDC_PERCENT
#define IDC_FE 119
#define IDC_PI 120
#define IDC_EQU 121
#define IDC_FE 119
#define IDC_PI 120
#define IDC_EQU 121
#define IDC_MCLEAR 122
#define IDC_RECALL 123
#define IDC_STORE 124
#define IDC_MPLUS 125
#define IDC_MMINUS 126
#define IDC_MCLEAR 122
#define IDC_RECALL 123
#define IDC_STORE 124
#define IDC_MPLUS 125
#define IDC_MMINUS 126
#define IDC_EXP 127
#define IDC_EXP 127
#define IDC_OPENP 128
#define IDC_CLOSEP 129
#define IDC_OPENP 128
#define IDC_CLOSEP 129
#define IDC_0 130 // The controls for 0 through F must be consecutive and in order
#define IDC_1 131
#define IDC_2 132
#define IDC_3 133
#define IDC_4 134
#define IDC_5 135
#define IDC_6 136
#define IDC_7 137
#define IDC_8 138
#define IDC_9 139
#define IDC_A 140
#define IDC_B 141
#define IDC_C 142
#define IDC_D 143
#define IDC_E 144
#define IDC_F 145 // this is last control ID which must match the string table
#define IDC_INV 146
#define IDC_SET_RESULT 147
#define IDC_0 130 // The controls for 0 through F must be consecutive and in order
#define IDC_1 131
#define IDC_2 132
#define IDC_3 133
#define IDC_4 134
#define IDC_5 135
#define IDC_6 136
#define IDC_7 137
#define IDC_8 138
#define IDC_9 139
#define IDC_A 140
#define IDC_B 141
#define IDC_C 142
#define IDC_D 143
#define IDC_E 144
#define IDC_F 145 // this is last control ID which must match the string table
#define IDC_INV 146
#define IDC_SET_RESULT 147
#define IDC_LASTCONTROL IDC_SET_RESULT
#define IDC_BINEDITSTART 700
#define IDC_BINPOS0 700
#define IDC_BINPOS1 701
#define IDC_BINPOS2 702
#define IDC_BINPOS3 703
#define IDC_BINPOS4 704
#define IDC_BINPOS5 705
#define IDC_BINPOS6 706
#define IDC_BINPOS7 707
#define IDC_BINPOS8 708
#define IDC_BINPOS9 709
#define IDC_BINPOS10 710
#define IDC_BINPOS11 711
#define IDC_BINPOS12 712
#define IDC_BINPOS13 713
#define IDC_BINPOS14 714
#define IDC_BINPOS15 715
#define IDC_BINPOS16 716
#define IDC_BINPOS17 717
#define IDC_BINPOS18 718
#define IDC_BINPOS19 719
#define IDC_BINPOS20 720
#define IDC_BINPOS21 721
#define IDC_BINPOS22 722
#define IDC_BINPOS23 723
#define IDC_BINPOS24 724
#define IDC_BINPOS25 725
#define IDC_BINPOS26 726
#define IDC_BINPOS27 727
#define IDC_BINPOS28 728
#define IDC_BINPOS29 729
#define IDC_BINPOS30 730
#define IDC_BINPOS31 731
#define IDC_BINPOS32 732
#define IDC_BINPOS33 733
#define IDC_BINPOS34 734
#define IDC_BINPOS35 735
#define IDC_BINPOS36 736
#define IDC_BINPOS37 737
#define IDC_BINPOS38 738
#define IDC_BINPOS39 739
#define IDC_BINPOS40 740
#define IDC_BINPOS41 741
#define IDC_BINPOS42 742
#define IDC_BINPOS43 743
#define IDC_BINPOS44 744
#define IDC_BINPOS45 745
#define IDC_BINPOS46 746
#define IDC_BINPOS47 747
#define IDC_BINPOS48 748
#define IDC_BINPOS49 749
#define IDC_BINPOS50 750
#define IDC_BINPOS51 751
#define IDC_BINPOS52 752
#define IDC_BINPOS53 753
#define IDC_BINPOS54 754
#define IDC_BINPOS55 755
#define IDC_BINPOS56 756
#define IDC_BINPOS57 757
#define IDC_BINPOS58 758
#define IDC_BINPOS59 759
#define IDC_BINPOS60 760
#define IDC_BINPOS61 761
#define IDC_BINPOS62 762
#define IDC_BINPOS63 763
#define IDC_BINEDITEND 763
#define IDC_BINEDITSTART 700
#define IDC_BINPOS0 700
#define IDC_BINPOS1 701
#define IDC_BINPOS2 702
#define IDC_BINPOS3 703
#define IDC_BINPOS4 704
#define IDC_BINPOS5 705
#define IDC_BINPOS6 706
#define IDC_BINPOS7 707
#define IDC_BINPOS8 708
#define IDC_BINPOS9 709
#define IDC_BINPOS10 710
#define IDC_BINPOS11 711
#define IDC_BINPOS12 712
#define IDC_BINPOS13 713
#define IDC_BINPOS14 714
#define IDC_BINPOS15 715
#define IDC_BINPOS16 716
#define IDC_BINPOS17 717
#define IDC_BINPOS18 718
#define IDC_BINPOS19 719
#define IDC_BINPOS20 720
#define IDC_BINPOS21 721
#define IDC_BINPOS22 722
#define IDC_BINPOS23 723
#define IDC_BINPOS24 724
#define IDC_BINPOS25 725
#define IDC_BINPOS26 726
#define IDC_BINPOS27 727
#define IDC_BINPOS28 728
#define IDC_BINPOS29 729
#define IDC_BINPOS30 730
#define IDC_BINPOS31 731
#define IDC_BINPOS32 732
#define IDC_BINPOS33 733
#define IDC_BINPOS34 734
#define IDC_BINPOS35 735
#define IDC_BINPOS36 736
#define IDC_BINPOS37 737
#define IDC_BINPOS38 738
#define IDC_BINPOS39 739
#define IDC_BINPOS40 740
#define IDC_BINPOS41 741
#define IDC_BINPOS42 742
#define IDC_BINPOS43 743
#define IDC_BINPOS44 744
#define IDC_BINPOS45 745
#define IDC_BINPOS46 746
#define IDC_BINPOS47 747
#define IDC_BINPOS48 748
#define IDC_BINPOS49 749
#define IDC_BINPOS50 750
#define IDC_BINPOS51 751
#define IDC_BINPOS52 752
#define IDC_BINPOS53 753
#define IDC_BINPOS54 754
#define IDC_BINPOS55 755
#define IDC_BINPOS56 756
#define IDC_BINPOS57 757
#define IDC_BINPOS58 758
#define IDC_BINPOS59 759
#define IDC_BINPOS60 760
#define IDC_BINPOS61 761
#define IDC_BINPOS62 762
#define IDC_BINPOS63 763
#define IDC_BINEDITEND 763
// The strings in the following range IDS_ENGINESTR_FIRST ... IDS_ENGINESTR_MAX are strings allocated in the
// resource for the purpose internal to Engine and cant be used by the clients
#define IDS_ENGINESTR_FIRST 0
#define IDS_ENGINESTR_MAX 200
#define IDS_ENGINESTR_FIRST 0
#define IDS_ENGINESTR_MAX 200

View File

@@ -20,7 +20,7 @@
#include "../CalculatorVector.h"
#include "../ExpressionCommand.h"
#include "RadixType.h"
#include "History.h" // for History Collector
#include "History.h" // for History Collector
#include "CalcInput.h"
#include "CalcUtils.h"
#include "ICalcDisplay.h"
@@ -31,11 +31,12 @@
// The real exports follows later
// This is expected to be in same order as IDM_QWORD, IDM_DWORD etc.
enum eNUM_WIDTH {
QWORD_WIDTH, // Number width of 64 bits mode (default)
DWORD_WIDTH, // Number width of 32 bits mode
WORD_WIDTH, // Number width of 16 bits mode
BYTE_WIDTH // Number width of 16 bits mode
enum eNUM_WIDTH
{
QWORD_WIDTH, // Number width of 64 bits mode (default)
DWORD_WIDTH, // Number width of 32 bits mode
WORD_WIDTH, // Number width of 16 bits mode
BYTE_WIDTH // Number width of 16 bits mode
};
typedef enum eNUM_WIDTH NUM_WIDTH;
static constexpr size_t NUM_WIDTH_LENGTH = 4;
@@ -45,62 +46,89 @@ namespace CalculationManager
class IResourceProvider;
}
namespace CalculatorUnitTests
namespace CalculatorEngineTests
{
class CalcEngineTests;
}
class CCalcEngine {
class CCalcEngine
{
public:
CCalcEngine(bool fPrecedence, bool fIntegerMode, CalculationManager::IResourceProvider* const pResourceProvider, __in_opt ICalcDisplay *pCalcDisplay, __in_opt std::shared_ptr<IHistoryDisplay> pHistoryDisplay);
CCalcEngine(
bool fPrecedence,
bool fIntegerMode,
CalculationManager::IResourceProvider* const pResourceProvider,
__in_opt ICalcDisplay* pCalcDisplay,
__in_opt std::shared_ptr<IHistoryDisplay> pHistoryDisplay);
void ProcessCommand(OpCode wID);
void DisplayError (uint32_t nError);
void DisplayError(uint32_t nError);
std::unique_ptr<CalcEngine::Rational> PersistedMemObject();
void PersistedMemObject(CalcEngine::Rational const& memObject);
bool FInErrorState() { return m_bError; }
bool FInRecordingState() { return m_bRecord; }
bool FInErrorState()
{
return m_bError;
}
bool FInRecordingState()
{
return m_bRecord;
}
void SettingsChanged();
bool IsCurrentTooBigForTrig();
int GetCurrentRadix();
std::wstring GetCurrentResultForRadix(uint32_t radix, int32_t precision);
void ChangePrecision(int32_t precision) { m_precision = precision; ChangeConstants(m_radix, precision); }
void ChangePrecision(int32_t precision)
{
m_precision = precision;
ChangeConstants(m_radix, precision);
}
std::wstring GroupDigitsPerRadix(std::wstring_view numberString, uint32_t radix);
std::wstring GetStringForDisplay(CalcEngine::Rational const& rat, uint32_t radix);
void UpdateMaxIntDigits();
wchar_t DecimalSeparator() const;
// Static methods for the instance
static void InitialOneTimeOnlySetup(CalculationManager::IResourceProvider& resourceProvider); // Once per load time to call to initialize all shared global variables
static void
InitialOneTimeOnlySetup(CalculationManager::IResourceProvider& resourceProvider); // Once per load time to call to initialize all shared global variables
// returns the ptr to string representing the operator. Mostly same as the button, but few special cases for x^y etc.
static std::wstring_view GetString(int ids) { return s_engineStrings[ids]; }
static std::wstring_view OpCodeToString(int nOpCode) { return GetString(IdStrFromCmdId(nOpCode)); }
static std::wstring_view GetString(int ids)
{
return s_engineStrings[std::to_wstring(ids)];
}
static std::wstring_view GetString(std::wstring ids)
{
return s_engineStrings[ids];
}
static std::wstring_view OpCodeToString(int nOpCode)
{
return GetString(IdStrFromCmdId(nOpCode));
}
static std::wstring_view OpCodeToUnaryString(int nOpCode, bool fInv, ANGLE_TYPE angletype);
private:
bool m_fPrecedence;
bool m_fIntegerMode; /* This is true if engine is explicitly called to be in integer mode. All bases are restricted to be in integers only */
ICalcDisplay *m_pCalcDisplay;
ICalcDisplay* m_pCalcDisplay;
CalculationManager::IResourceProvider* const m_resourceProvider;
int m_nOpCode; /* ID value of operation. */
int m_nOpCode; /* ID value of operation. */
int m_nPrevOpCode; // opcode which computed the number in m_currentVal. 0 if it is already bracketed or plain number or
// if it hasn't yet been computed
bool m_bChangeOp; /* Flag for changing operation. */
bool m_bRecord; // Global mode: recording or displaying
bool m_bSetCalcState; // Flag for setting the engine result state
bool m_bChangeOp; /* Flag for changing operation. */
bool m_bRecord; // Global mode: recording or displaying
bool m_bSetCalcState; // Flag for setting the engine result state
CalcEngine::CalcInput m_input; // Global calc input object for decimal strings
eNUMOBJ_FMT m_nFE; /* Scientific notation conversion flag. */
eNUMOBJ_FMT m_nFE; /* Scientific notation conversion flag. */
CalcEngine::Rational m_maxTrigonometricNum;
std::unique_ptr<CalcEngine::Rational> m_memoryValue; // Current memory value.
CalcEngine::Rational m_holdVal; // For holding the second operand in repetitive calculations ( pressing "=" continuously)
CalcEngine::Rational m_currentVal; // Currently displayed number used everywhere.
CalcEngine::Rational m_lastVal; // Number before operation (left operand).
std::array<CalcEngine::Rational, MAXPRECDEPTH> m_parenVals; // Holding array for parenthesis values.
CalcEngine::Rational m_currentVal; // Currently displayed number used everywhere.
CalcEngine::Rational m_lastVal; // Number before operation (left operand).
std::array<CalcEngine::Rational, MAXPRECDEPTH> m_parenVals; // Holding array for parenthesis values.
std::array<CalcEngine::Rational, MAXPRECDEPTH> m_precedenceVals; // Holding array for precedence values.
bool m_bError; // Error flag.
bool m_bInv; // Inverse on/off flag.
bool m_bNoPrevEqu; /* Flag for previous equals. */
bool m_bError; // Error flag.
bool m_bInv; // Inverse on/off flag.
bool m_bNoPrevEqu; /* Flag for previous equals. */
uint32_t m_radix;
int32_t m_precision;
@@ -109,21 +137,21 @@ private:
std::wstring m_numberString;
int m_nTempCom; /* Holding place for the last command. */
int m_openParenCount; // Number of open parentheses.
std::array<int, MAXPRECDEPTH> m_nOp; /* Holding array for parenthesis operations. */
std::array<int, MAXPRECDEPTH> m_nPrecOp; /* Holding array for precedence operations. */
size_t m_precedenceOpCount; /* Current number of precedence ops in holding. */
int m_nLastCom; // Last command entered.
ANGLE_TYPE m_angletype; // Current Angle type when in dec mode. one of deg, rad or grad
NUM_WIDTH m_numwidth; // one of qword, dword, word or byte mode.
int32_t m_dwWordBitWidth; // # of bits in currently selected word size
int m_nTempCom; /* Holding place for the last command. */
size_t m_openParenCount; // Number of open parentheses.
std::array<int, MAXPRECDEPTH> m_nOp; /* Holding array for parenthesis operations. */
std::array<int, MAXPRECDEPTH> m_nPrecOp; /* Holding array for precedence operations. */
size_t m_precedenceOpCount; /* Current number of precedence ops in holding. */
int m_nLastCom; // Last command entered.
ANGLE_TYPE m_angletype; // Current Angle type when in dec mode. one of deg, rad or grad
NUM_WIDTH m_numwidth; // one of qword, dword, word or byte mode.
int32_t m_dwWordBitWidth; // # of bits in currently selected word size
CHistoryCollector m_HistoryCollector; // Accumulator of each line of history as various commands are processed
std::array<CalcEngine::Rational, NUM_WIDTH_LENGTH> m_chopNumbers; // word size enforcement
std::array<std::wstring, NUM_WIDTH_LENGTH> m_maxDecimalValueStrings; // maximum values represented by a given word width based off m_chopNumbers
static std::array<std::wstring, CSTRINGSENGMAX> s_engineStrings; // the string table shared across all instances
std::array<CalcEngine::Rational, NUM_WIDTH_LENGTH> m_chopNumbers; // word size enforcement
std::array<std::wstring, NUM_WIDTH_LENGTH> m_maxDecimalValueStrings; // maximum values represented by a given word width based off m_chopNumbers
static std::unordered_map<std::wstring, std::wstring> s_engineStrings; // the string table shared across all instances
wchar_t m_decimalSeparator;
wchar_t m_groupSeparator;
@@ -142,16 +170,18 @@ private:
CalcEngine::Rational DoOperation(int operation, CalcEngine::Rational const& lhs, CalcEngine::Rational const& rhs);
void SetRadixTypeAndNumWidth(RADIX_TYPE radixtype, NUM_WIDTH numwidth);
int32_t DwWordBitWidthFromeNumWidth(NUM_WIDTH numwidth);
uint32_t NRadixFromRadixType( RADIX_TYPE radixtype);
uint32_t NRadixFromRadixType(RADIX_TYPE radixtype);
bool TryToggleBit(CalcEngine::Rational& rat, uint32_t wbitno);
void CheckAndAddLastBinOpToHistory(bool addToHistory = true);
int IdcSetAngleTypeDecMode(int idc);
void InitChopNumbers();
static void LoadEngineStrings(CalculationManager::IResourceProvider& resourceProvider);
static int IdStrFromCmdId(int id) { return id - IDC_FIRSTCONTROL + IDS_FIRSTENGSTR; }
static int IdStrFromCmdId(int id)
{
return id - IDC_FIRSTCONTROL + IDS_ENGINESTR_FIRST;
}
static std::vector<uint32_t> DigitGroupingStringToGroupingVector(std::wstring_view groupingString);
std::wstring GroupDigits(std::wstring_view delimiter, std::vector<uint32_t> const& grouping, std::wstring_view displayString, bool isNumNegative = false);
@@ -160,5 +190,5 @@ private:
static void ChangeBaseConstants(uint32_t radix, int maxIntDigits, int32_t precision);
void BaseOrPrecisionChanged();
friend class CalculatorUnitTests::CalcEngineTests;
friend class CalculatorEngineTests::CalcEngineTests;
};

View File

@@ -13,16 +13,26 @@ namespace CalcEngine
class CalcNumSec
{
public:
CalcNumSec() :
value(),
m_isNegative(false)
{}
CalcNumSec()
: value()
, m_isNegative(false)
{
}
void Clear();
bool IsEmpty() { return value.empty(); }
bool IsEmpty()
{
return value.empty();
}
bool IsNegative() { return m_isNegative; }
void IsNegative(bool isNegative) { m_isNegative = isNegative; }
bool IsNegative()
{
return m_isNegative;
}
void IsNegative(bool isNegative)
{
m_isNegative = isNegative;
}
std::wstring value;
@@ -33,17 +43,20 @@ namespace CalcEngine
class CalcInput
{
public:
CalcInput() : CalcInput(L'.')
{}
CalcInput()
: CalcInput(L'.')
{
}
CalcInput(wchar_t decSymbol) :
m_hasExponent(false),
m_hasDecimal(false),
m_decPtIndex(0),
m_decSymbol(decSymbol),
m_base(),
m_exponent()
{}
CalcInput(wchar_t decSymbol)
: m_hasExponent(false)
, m_hasDecimal(false)
, m_decPtIndex(0)
, m_decSymbol(decSymbol)
, m_base()
, m_exponent()
{
}
void Clear();
bool TryToggleSign(bool isIntegerMode, std::wstring_view maxNumStr);

View File

@@ -13,327 +13,284 @@
* Created: 13-Feb-2008
*
\****************************************************************************/
#define IDS_FIRSTENGSTR IDS_ENGINESTR_FIRST
#define IDS_DECIMAL 4
#pragma once
// All unary op function names for easy history reading
// This is where the first string after all the commands in order have been placed, should be placed
// keeping in consecutive helps us to allocate 1 string table and index them
#define IDS_FNSZFIRST (IDC_F -IDC_FIRSTCONTROL)+1
#include <array>
#include <string>
#include <string_view>
#include <unordered_map>
#define IDS_FRAC IDS_FNSZFIRST
#define IDS_SIND IDS_FNSZFIRST+1
#define IDS_COSD IDS_FNSZFIRST+2
#define IDS_TAND IDS_FNSZFIRST+3
#define IDS_ASIND IDS_FNSZFIRST+4
#define IDS_ACOSD IDS_FNSZFIRST+5
#define IDS_ATAND IDS_FNSZFIRST+6
#define IDS_SINR IDS_FNSZFIRST+7
#define IDS_COSR IDS_FNSZFIRST+8
#define IDS_TANR IDS_FNSZFIRST+9
#define IDS_ASINR IDS_FNSZFIRST+10
#define IDS_ACOSR IDS_FNSZFIRST+11
#define IDS_ATANR IDS_FNSZFIRST+12
#define IDS_SING IDS_FNSZFIRST+13
#define IDS_COSG IDS_FNSZFIRST+14
#define IDS_TANG IDS_FNSZFIRST+15
#define IDS_ASING IDS_FNSZFIRST+16
#define IDS_ACOSG IDS_FNSZFIRST+17
#define IDS_ATANG IDS_FNSZFIRST+18
#define IDS_ASINH IDS_FNSZFIRST+19
#define IDS_ACOSH IDS_FNSZFIRST+20
#define IDS_ATANH IDS_FNSZFIRST+21
#define IDS_POWE IDS_FNSZFIRST+22
#define IDS_POW10 IDS_FNSZFIRST+23
#define IDS_SQRT IDS_FNSZFIRST+24
#define IDS_SQR IDS_FNSZFIRST+25
#define IDS_CUBE IDS_FNSZFIRST+26
#define IDS_CUBERT IDS_FNSZFIRST+27
#define IDS_FACT IDS_FNSZFIRST+28
#define IDS_REC IDS_FNSZFIRST+29
#define IDS_DEGREES IDS_FNSZFIRST+30
#define IDS_NEGATE IDS_FNSZFIRST+31
#define IDS_RSH IDS_FNSZFIRST+32
#define IDS_FNSZLAST IDS_RSH
#define IDS_ERRORS_FIRST IDS_FNSZLAST+1
inline constexpr auto IDS_ERRORS_FIRST = 99;
// This is the list of error strings corresponding to SCERR_DIVIDEZERO..
#define IDS_DIVBYZERO IDS_ERRORS_FIRST
#define IDS_DOMAIN IDS_ERRORS_FIRST+1
#define IDS_UNDEFINED IDS_ERRORS_FIRST+2
#define IDS_POS_INFINITY IDS_ERRORS_FIRST+3
#define IDS_NEG_INFINITY IDS_ERRORS_FIRST+4
#define IDS_NOMEM IDS_ERRORS_FIRST+6
#define IDS_TOOMANY IDS_ERRORS_FIRST+7
#define IDS_OVERFLOW IDS_ERRORS_FIRST+8
#define IDS_NORESULT IDS_ERRORS_FIRST+9
#define IDS_INSUFFICIENT_DATA IDS_ERRORS_FIRST+10
inline constexpr auto IDS_DIVBYZERO = IDS_ERRORS_FIRST;
inline constexpr auto IDS_DOMAIN = IDS_ERRORS_FIRST + 1;
inline constexpr auto IDS_UNDEFINED = IDS_ERRORS_FIRST + 2;
inline constexpr auto IDS_POS_INFINITY = IDS_ERRORS_FIRST + 3;
inline constexpr auto IDS_NEG_INFINITY = IDS_ERRORS_FIRST + 4;
inline constexpr auto IDS_NOMEM = IDS_ERRORS_FIRST + 6;
inline constexpr auto IDS_TOOMANY = IDS_ERRORS_FIRST + 7;
inline constexpr auto IDS_OVERFLOW = IDS_ERRORS_FIRST + 8;
inline constexpr auto IDS_NORESULT = IDS_ERRORS_FIRST + 9;
inline constexpr auto IDS_INSUFFICIENT_DATA = IDS_ERRORS_FIRST + 10;
#define CSTRINGSENGMAX IDS_INSUFFICIENT_DATA+1
inline constexpr auto CSTRINGSENGMAX = IDS_INSUFFICIENT_DATA + 1;
// Arithmetic expression evaluator error strings
#define IDS_ERR_UNK_CH CSTRINGSENGMAX+1
#define IDS_ERR_UNK_FN CSTRINGSENGMAX+2
#define IDS_ERR_UNEX_NUM CSTRINGSENGMAX+3
#define IDS_ERR_UNEX_CH CSTRINGSENGMAX+4
#define IDS_ERR_UNEX_SZ CSTRINGSENGMAX+5
#define IDS_ERR_MISMATCH_CLOSE CSTRINGSENGMAX+6
#define IDS_ERR_UNEX_END CSTRINGSENGMAX+7
#define IDS_ERR_SG_INV_ERROR CSTRINGSENGMAX+8
#define IDS_ERR_INPUT_OVERFLOW CSTRINGSENGMAX+9
#define IDS_ERR_OUTPUT_OVERFLOW CSTRINGSENGMAX+10
inline constexpr auto IDS_ERR_UNK_CH = CSTRINGSENGMAX + 1;
inline constexpr auto IDS_ERR_UNK_FN = CSTRINGSENGMAX + 2;
inline constexpr auto IDS_ERR_UNEX_NUM = CSTRINGSENGMAX + 3;
inline constexpr auto IDS_ERR_UNEX_CH = CSTRINGSENGMAX + 4;
inline constexpr auto IDS_ERR_UNEX_SZ = CSTRINGSENGMAX + 5;
inline constexpr auto IDS_ERR_MISMATCH_CLOSE = CSTRINGSENGMAX + 6;
inline constexpr auto IDS_ERR_UNEX_END = CSTRINGSENGMAX + 7;
inline constexpr auto IDS_ERR_SG_INV_ERROR = CSTRINGSENGMAX + 8;
inline constexpr auto IDS_ERR_INPUT_OVERFLOW = CSTRINGSENGMAX + 9;
inline constexpr auto IDS_ERR_OUTPUT_OVERFLOW = CSTRINGSENGMAX + 10;
#define SIDS_PLUS_MINUS L"0"
#define SIDS_CLEAR L"1"
#define SIDS_CE L"2"
#define SIDS_BACKSPACE L"3"
#define SIDS_DECIMAL_SEPARATOR L"4"
#define SIDS_EMPTY_STRING L"5"
#define SIDS_AND L"6"
#define SIDS_OR L"7"
#define SIDS_XOR L"8"
#define SIDS_LSH L"9"
#define SIDS_RSH L"10"
#define SIDS_DIVIDE L"11"
#define SIDS_MULTIPLY L"12"
#define SIDS_PLUS L"13"
#define SIDS_MINUS L"14"
#define SIDS_MOD L"15"
#define SIDS_YROOT L"16"
#define SIDS_POW_HAT L"17"
#define SIDS_INT L"18"
#define SIDS_ROL L"19"
#define SIDS_ROR L"20"
#define SIDS_NOT L"21"
#define SIDS_SIN L"22"
#define SIDS_COS L"23"
#define SIDS_TAN L"24"
#define SIDS_SINH L"25"
#define SIDS_COSH L"26"
#define SIDS_TANH L"27"
#define SIDS_LN L"28"
#define SIDS_LOG L"29"
#define SIDS_SQRT L"30"
#define SIDS_XPOW2 L"31"
#define SIDS_XPOW3 L"32"
#define SIDS_NFACTORIAL L"33"
#define SIDS_RECIPROCAL L"34"
#define SIDS_DMS L"35"
#define SIDS_CUBEROOT L"36"
#define SIDS_POWTEN L"37"
#define SIDS_PERCENT L"38"
#define SIDS_SCIENTIFIC_NOTATION L"39"
#define SIDS_PI L"40"
#define SIDS_EQUAL L"41"
#define SIDS_MC L"42"
#define SIDS_MR L"43"
#define SIDS_MS L"44"
#define SIDS_MPLUS L"45"
#define SIDS_MMINUS L"46"
#define SIDS_EXP L"47"
#define SIDS_OPEN_PAREN L"48"
#define SIDS_CLOSE_PAREN L"49"
#define SIDS_0 L"50"
#define SIDS_1 L"51"
#define SIDS_2 L"52"
#define SIDS_3 L"53"
#define SIDS_4 L"54"
#define SIDS_5 L"55"
#define SIDS_6 L"56"
#define SIDS_7 L"57"
#define SIDS_8 L"58"
#define SIDS_9 L"59"
#define SIDS_A L"60"
#define SIDS_B L"61"
#define SIDS_C L"62"
#define SIDS_D L"63"
#define SIDS_E L"64"
#define SIDS_F L"65"
#define SIDS_FRAC L"66"
#define SIDS_SIND L"67"
#define SIDS_COSD L"68"
#define SIDS_TAND L"69"
#define SIDS_ASIND L"70"
#define SIDS_ACOSD L"71"
#define SIDS_ATAND L"72"
#define SIDS_SINR L"73"
#define SIDS_COSR L"74"
#define SIDS_TANR L"75"
#define SIDS_ASINR L"76"
#define SIDS_ACOSR L"77"
#define SIDS_ATANR L"78"
#define SIDS_SING L"79"
#define SIDS_COSG L"80"
#define SIDS_TANG L"81"
#define SIDS_ASING L"82"
#define SIDS_ACOSG L"83"
#define SIDS_ATANG L"84"
#define SIDS_ASINH L"85"
#define SIDS_ACOSH L"86"
#define SIDS_ATANH L"87"
#define SIDS_POWE L"88"
#define SIDS_POWTEN2 L"89"
#define SIDS_SQRT2 L"90"
#define SIDS_SQR L"91"
#define SIDS_CUBE L"92"
#define SIDS_CUBERT L"93"
#define SIDS_FACT L"94"
#define SIDS_RECIPROC L"95"
#define SIDS_DEGREES L"96"
#define SIDS_NEGATE L"97"
#define SIDS_RSH2 L"98"
#define SIDS_DIVIDEBYZERO L"99"
#define SIDS_DOMAIN L"100"
#define SIDS_UNDEFINED L"101"
#define SIDS_POS_INFINITY L"102"
#define SIDS_NEG_INFINITY L"103"
#define SIDS_ABORTED L"104"
#define SIDS_NOMEM L"105"
#define SIDS_TOOMANY L"106"
#define SIDS_OVERFLOW L"107"
#define SIDS_NORESULT L"108"
#define SIDS_INSUFFICIENT_DATA L"109"
// Resource keys for CEngineStrings.resw
inline constexpr auto SIDS_PLUS_MINUS = L"0";
inline constexpr auto SIDS_CLEAR = L"1";
inline constexpr auto SIDS_CE = L"2";
inline constexpr auto SIDS_BACKSPACE = L"3";
inline constexpr auto SIDS_DECIMAL_SEPARATOR = L"4";
inline constexpr auto SIDS_EMPTY_STRING = L"5";
inline constexpr auto SIDS_AND = L"6";
inline constexpr auto SIDS_OR = L"7";
inline constexpr auto SIDS_XOR = L"8";
inline constexpr auto SIDS_LSH = L"9";
inline constexpr auto SIDS_RSH = L"10";
inline constexpr auto SIDS_DIVIDE = L"11";
inline constexpr auto SIDS_MULTIPLY = L"12";
inline constexpr auto SIDS_PLUS = L"13";
inline constexpr auto SIDS_MINUS = L"14";
inline constexpr auto SIDS_MOD = L"15";
inline constexpr auto SIDS_YROOT = L"16";
inline constexpr auto SIDS_POW_HAT = L"17";
inline constexpr auto SIDS_INT = L"18";
inline constexpr auto SIDS_ROL = L"19";
inline constexpr auto SIDS_ROR = L"20";
inline constexpr auto SIDS_NOT = L"21";
inline constexpr auto SIDS_SIN = L"22";
inline constexpr auto SIDS_COS = L"23";
inline constexpr auto SIDS_TAN = L"24";
inline constexpr auto SIDS_SINH = L"25";
inline constexpr auto SIDS_COSH = L"26";
inline constexpr auto SIDS_TANH = L"27";
inline constexpr auto SIDS_LN = L"28";
inline constexpr auto SIDS_LOG = L"29";
inline constexpr auto SIDS_SQRT = L"30";
inline constexpr auto SIDS_XPOW2 = L"31";
inline constexpr auto SIDS_XPOW3 = L"32";
inline constexpr auto SIDS_NFACTORIAL = L"33";
inline constexpr auto SIDS_RECIPROCAL = L"34";
inline constexpr auto SIDS_DMS = L"35";
inline constexpr auto SIDS_CUBEROOT = L"36";
inline constexpr auto SIDS_POWTEN = L"37";
inline constexpr auto SIDS_PERCENT = L"38";
inline constexpr auto SIDS_SCIENTIFIC_NOTATION = L"39";
inline constexpr auto SIDS_PI = L"40";
inline constexpr auto SIDS_EQUAL = L"41";
inline constexpr auto SIDS_MC = L"42";
inline constexpr auto SIDS_MR = L"43";
inline constexpr auto SIDS_MS = L"44";
inline constexpr auto SIDS_MPLUS = L"45";
inline constexpr auto SIDS_MMINUS = L"46";
inline constexpr auto SIDS_EXP = L"47";
inline constexpr auto SIDS_OPEN_PAREN = L"48";
inline constexpr auto SIDS_CLOSE_PAREN = L"49";
inline constexpr auto SIDS_0 = L"50";
inline constexpr auto SIDS_1 = L"51";
inline constexpr auto SIDS_2 = L"52";
inline constexpr auto SIDS_3 = L"53";
inline constexpr auto SIDS_4 = L"54";
inline constexpr auto SIDS_5 = L"55";
inline constexpr auto SIDS_6 = L"56";
inline constexpr auto SIDS_7 = L"57";
inline constexpr auto SIDS_8 = L"58";
inline constexpr auto SIDS_9 = L"59";
inline constexpr auto SIDS_A = L"60";
inline constexpr auto SIDS_B = L"61";
inline constexpr auto SIDS_C = L"62";
inline constexpr auto SIDS_D = L"63";
inline constexpr auto SIDS_E = L"64";
inline constexpr auto SIDS_F = L"65";
inline constexpr auto SIDS_FRAC = L"66";
inline constexpr auto SIDS_SIND = L"67";
inline constexpr auto SIDS_COSD = L"68";
inline constexpr auto SIDS_TAND = L"69";
inline constexpr auto SIDS_ASIND = L"70";
inline constexpr auto SIDS_ACOSD = L"71";
inline constexpr auto SIDS_ATAND = L"72";
inline constexpr auto SIDS_SINR = L"73";
inline constexpr auto SIDS_COSR = L"74";
inline constexpr auto SIDS_TANR = L"75";
inline constexpr auto SIDS_ASINR = L"76";
inline constexpr auto SIDS_ACOSR = L"77";
inline constexpr auto SIDS_ATANR = L"78";
inline constexpr auto SIDS_SING = L"79";
inline constexpr auto SIDS_COSG = L"80";
inline constexpr auto SIDS_TANG = L"81";
inline constexpr auto SIDS_ASING = L"82";
inline constexpr auto SIDS_ACOSG = L"83";
inline constexpr auto SIDS_ATANG = L"84";
inline constexpr auto SIDS_ASINH = L"85";
inline constexpr auto SIDS_ACOSH = L"86";
inline constexpr auto SIDS_ATANH = L"87";
inline constexpr auto SIDS_POWE = L"88";
inline constexpr auto SIDS_POWTEN2 = L"89";
inline constexpr auto SIDS_SQRT2 = L"90";
inline constexpr auto SIDS_SQR = L"91";
inline constexpr auto SIDS_CUBE = L"92";
inline constexpr auto SIDS_CUBERT = L"93";
inline constexpr auto SIDS_FACT = L"94";
inline constexpr auto SIDS_RECIPROC = L"95";
inline constexpr auto SIDS_DEGREES = L"96";
inline constexpr auto SIDS_NEGATE = L"97";
inline constexpr auto SIDS_RSH2 = L"98";
inline constexpr auto SIDS_DIVIDEBYZERO = L"99";
inline constexpr auto SIDS_DOMAIN = L"100";
inline constexpr auto SIDS_UNDEFINED = L"101";
inline constexpr auto SIDS_POS_INFINITY = L"102";
inline constexpr auto SIDS_NEG_INFINITY = L"103";
inline constexpr auto SIDS_ABORTED = L"104";
inline constexpr auto SIDS_NOMEM = L"105";
inline constexpr auto SIDS_TOOMANY = L"106";
inline constexpr auto SIDS_OVERFLOW = L"107";
inline constexpr auto SIDS_NORESULT = L"108";
inline constexpr auto SIDS_INSUFFICIENT_DATA = L"109";
// 110 is skipped by CSTRINGSENGMAX
#define SIDS_ERR_UNK_CH L"111"
#define SIDS_ERR_UNK_FN L"112"
#define SIDS_ERR_UNEX_NUM L"113"
#define SIDS_ERR_UNEX_CH L"114"
#define SIDS_ERR_UNEX_SZ L"115"
#define SIDS_ERR_MISMATCH_CLOSE L"116"
#define SIDS_ERR_UNEX_END L"117"
#define SIDS_ERR_SG_INV_ERROR L"118"
#define SIDS_ERR_INPUT_OVERFLOW L"119"
#define SIDS_ERR_OUTPUT_OVERFLOW L"120"
inline constexpr auto SIDS_ERR_UNK_CH = L"111";
inline constexpr auto SIDS_ERR_UNK_FN = L"112";
inline constexpr auto SIDS_ERR_UNEX_NUM = L"113";
inline constexpr auto SIDS_ERR_UNEX_CH = L"114";
inline constexpr auto SIDS_ERR_UNEX_SZ = L"115";
inline constexpr auto SIDS_ERR_MISMATCH_CLOSE = L"116";
inline constexpr auto SIDS_ERR_UNEX_END = L"117";
inline constexpr auto SIDS_ERR_SG_INV_ERROR = L"118";
inline constexpr auto SIDS_ERR_INPUT_OVERFLOW = L"119";
inline constexpr auto SIDS_ERR_OUTPUT_OVERFLOW = L"120";
__declspec(selectany) std::wstring g_sids[] =
{
std::wstring(SIDS_PLUS_MINUS),
std::wstring(SIDS_C),
std::wstring(SIDS_CE),
std::wstring(SIDS_BACKSPACE),
std::wstring(SIDS_DECIMAL_SEPARATOR),
std::wstring(SIDS_EMPTY_STRING),
std::wstring(SIDS_AND),
std::wstring(SIDS_OR),
std::wstring(SIDS_XOR),
std::wstring(SIDS_LSH),
std::wstring(SIDS_RSH),
std::wstring(SIDS_DIVIDE),
std::wstring(SIDS_MULTIPLY),
std::wstring(SIDS_PLUS),
std::wstring(SIDS_MINUS),
std::wstring(SIDS_MOD),
std::wstring(SIDS_YROOT),
std::wstring(SIDS_POW_HAT),
std::wstring(SIDS_INT),
std::wstring(SIDS_ROL),
std::wstring(SIDS_ROR),
std::wstring(SIDS_NOT),
std::wstring(SIDS_SIN),
std::wstring(SIDS_COS),
std::wstring(SIDS_TAN),
std::wstring(SIDS_SINH),
std::wstring(SIDS_COSH),
std::wstring(SIDS_TANH),
std::wstring(SIDS_LN),
std::wstring(SIDS_LOG),
std::wstring(SIDS_SQRT),
std::wstring(SIDS_XPOW2),
std::wstring(SIDS_XPOW3),
std::wstring(SIDS_NFACTORIAL),
std::wstring(SIDS_RECIPROCAL),
std::wstring(SIDS_DMS),
std::wstring(SIDS_CUBEROOT),
std::wstring(SIDS_POWTEN),
std::wstring(SIDS_PERCENT),
std::wstring(SIDS_SCIENTIFIC_NOTATION),
std::wstring(SIDS_PI),
std::wstring(SIDS_EQUAL),
std::wstring(SIDS_MC),
std::wstring(SIDS_MR),
std::wstring(SIDS_MS),
std::wstring(SIDS_MPLUS),
std::wstring(SIDS_MMINUS),
std::wstring(SIDS_EXP),
std::wstring(SIDS_OPEN_PAREN),
std::wstring(SIDS_CLOSE_PAREN),
std::wstring(SIDS_0),
std::wstring(SIDS_1),
std::wstring(SIDS_2),
std::wstring(SIDS_3),
std::wstring(SIDS_4),
std::wstring(SIDS_5),
std::wstring(SIDS_6),
std::wstring(SIDS_7),
std::wstring(SIDS_8),
std::wstring(SIDS_9),
std::wstring(SIDS_A),
std::wstring(SIDS_B),
std::wstring(SIDS_C),
std::wstring(SIDS_D),
std::wstring(SIDS_E),
std::wstring(SIDS_F),
std::wstring(SIDS_FRAC),
std::wstring(SIDS_SIND),
std::wstring(SIDS_COSD),
std::wstring(SIDS_TAND),
std::wstring(SIDS_ASIND),
std::wstring(SIDS_ACOSD),
std::wstring(SIDS_ATAND),
std::wstring(SIDS_SINR),
std::wstring(SIDS_COSR),
std::wstring(SIDS_TANR),
std::wstring(SIDS_ASINR),
std::wstring(SIDS_ACOSR),
std::wstring(SIDS_ATANR),
std::wstring(SIDS_SING),
std::wstring(SIDS_COSG),
std::wstring(SIDS_TANG),
std::wstring(SIDS_ASING),
std::wstring(SIDS_ACOSG),
std::wstring(SIDS_ATANG),
std::wstring(SIDS_ASINH),
std::wstring(SIDS_ACOSH),
std::wstring(SIDS_ATANH),
std::wstring(SIDS_POWE),
std::wstring(SIDS_POWTEN2),
std::wstring(SIDS_SQRT2),
std::wstring(SIDS_SQR),
std::wstring(SIDS_CUBE),
std::wstring(SIDS_CUBERT),
std::wstring(SIDS_FACT),
std::wstring(SIDS_RECIPROC),
std::wstring(SIDS_DEGREES),
std::wstring(SIDS_NEGATE),
std::wstring(SIDS_RSH),
std::wstring(SIDS_DIVIDEBYZERO),
std::wstring(SIDS_DOMAIN),
std::wstring(SIDS_UNDEFINED),
std::wstring(SIDS_POS_INFINITY),
std::wstring(SIDS_NEG_INFINITY),
std::wstring(SIDS_ABORTED),
std::wstring(SIDS_NOMEM),
std::wstring(SIDS_TOOMANY),
std::wstring(SIDS_OVERFLOW),
std::wstring(SIDS_NORESULT),
std::wstring(SIDS_INSUFFICIENT_DATA),
std::wstring(SIDS_ERR_UNK_CH),
std::wstring(SIDS_ERR_UNK_FN),
std::wstring(SIDS_ERR_UNEX_NUM),
std::wstring(SIDS_ERR_UNEX_CH),
std::wstring(SIDS_ERR_UNEX_SZ),
std::wstring(SIDS_ERR_MISMATCH_CLOSE),
std::wstring(SIDS_ERR_UNEX_END),
std::wstring(SIDS_ERR_SG_INV_ERROR),
std::wstring(SIDS_ERR_INPUT_OVERFLOW),
std::wstring(SIDS_ERR_OUTPUT_OVERFLOW)
};
// Include the resource key ID from above into this vector to load it into memory for the engine to use
inline constexpr std::array<std::wstring_view, 120> g_sids = { SIDS_PLUS_MINUS,
SIDS_C,
SIDS_CE,
SIDS_BACKSPACE,
SIDS_DECIMAL_SEPARATOR,
SIDS_EMPTY_STRING,
SIDS_AND,
SIDS_OR,
SIDS_XOR,
SIDS_LSH,
SIDS_RSH,
SIDS_DIVIDE,
SIDS_MULTIPLY,
SIDS_PLUS,
SIDS_MINUS,
SIDS_MOD,
SIDS_YROOT,
SIDS_POW_HAT,
SIDS_INT,
SIDS_ROL,
SIDS_ROR,
SIDS_NOT,
SIDS_SIN,
SIDS_COS,
SIDS_TAN,
SIDS_SINH,
SIDS_COSH,
SIDS_TANH,
SIDS_LN,
SIDS_LOG,
SIDS_SQRT,
SIDS_XPOW2,
SIDS_XPOW3,
SIDS_NFACTORIAL,
SIDS_RECIPROCAL,
SIDS_DMS,
SIDS_CUBEROOT,
SIDS_POWTEN,
SIDS_PERCENT,
SIDS_SCIENTIFIC_NOTATION,
SIDS_PI,
SIDS_EQUAL,
SIDS_MC,
SIDS_MR,
SIDS_MS,
SIDS_MPLUS,
SIDS_MMINUS,
SIDS_EXP,
SIDS_OPEN_PAREN,
SIDS_CLOSE_PAREN,
SIDS_0,
SIDS_1,
SIDS_2,
SIDS_3,
SIDS_4,
SIDS_5,
SIDS_6,
SIDS_7,
SIDS_8,
SIDS_9,
SIDS_A,
SIDS_B,
SIDS_C,
SIDS_D,
SIDS_E,
SIDS_F,
SIDS_FRAC,
SIDS_SIND,
SIDS_COSD,
SIDS_TAND,
SIDS_ASIND,
SIDS_ACOSD,
SIDS_ATAND,
SIDS_SINR,
SIDS_COSR,
SIDS_TANR,
SIDS_ASINR,
SIDS_ACOSR,
SIDS_ATANR,
SIDS_SING,
SIDS_COSG,
SIDS_TANG,
SIDS_ASING,
SIDS_ACOSG,
SIDS_ATANG,
SIDS_ASINH,
SIDS_ACOSH,
SIDS_ATANH,
SIDS_POWE,
SIDS_POWTEN2,
SIDS_SQRT2,
SIDS_SQR,
SIDS_CUBE,
SIDS_CUBERT,
SIDS_FACT,
SIDS_RECIPROC,
SIDS_DEGREES,
SIDS_NEGATE,
SIDS_RSH,
SIDS_DIVIDEBYZERO,
SIDS_DOMAIN,
SIDS_UNDEFINED,
SIDS_POS_INFINITY,
SIDS_NEG_INFINITY,
SIDS_ABORTED,
SIDS_NOMEM,
SIDS_TOOMANY,
SIDS_OVERFLOW,
SIDS_NORESULT,
SIDS_INSUFFICIENT_DATA,
SIDS_ERR_UNK_CH,
SIDS_ERR_UNK_FN,
SIDS_ERR_UNEX_NUM,
SIDS_ERR_UNEX_CH,
SIDS_ERR_UNEX_SZ,
SIDS_ERR_MISMATCH_CLOSE,
SIDS_ERR_UNEX_END,
SIDS_ERR_SG_INV_ERROR,
SIDS_ERR_INPUT_OVERFLOW,
SIDS_ERR_OUTPUT_OVERFLOW };

View File

@@ -3,6 +3,7 @@
#pragma once
#include <array>
#include "ICalcDisplay.h"
#include "IHistoryDisplay.h"
#include "Rational.h"
@@ -13,9 +14,10 @@ static constexpr size_t MAXPRECDEPTH = 25;
// Helper class really a internal class to CCalcEngine, to accumulate each history line of text by collecting the
// operands, operator, unary operator etc. Since it is a separate entity, it can be unit tested on its own but does
// rely on CCalcEngine calling it in appropriate order.
class CHistoryCollector {
class CHistoryCollector
{
public:
CHistoryCollector(ICalcDisplay *pCalcDisplay, std::shared_ptr<IHistoryDisplay> pHistoryDisplay, wchar_t decimalSymbol); // Can throw errors
CHistoryCollector(ICalcDisplay* pCalcDisplay, std::shared_ptr<IHistoryDisplay> pHistoryDisplay, wchar_t decimalSymbol); // Can throw errors
~CHistoryCollector();
void AddOpndToHistory(std::wstring_view numStr, CalcEngine::Rational const& rat, bool fRepetition = false);
void RemoveLastOpndFromHistory();
@@ -30,24 +32,25 @@ public:
bool FOpndAddedToHistory();
void CompleteHistoryLine(std::wstring_view numStr);
void ClearHistoryLine(std::wstring_view errStr);
int AddCommand(_In_ const std::shared_ptr<IExpressionCommand> & spCommand);
int AddCommand(_In_ const std::shared_ptr<IExpressionCommand>& spCommand);
void UpdateHistoryExpression(uint32_t radix, int32_t precision);
void SetDecimalSymbol(wchar_t decimalSymbol);
private:
std::shared_ptr<IHistoryDisplay> m_pHistoryDisplay;
ICalcDisplay *m_pCalcDisplay;
ICalcDisplay* m_pCalcDisplay;
int m_iCurLineHistStart; // index of the beginning of the current equation
// a sort of state, set to the index before 2 after 2 in the expression 2 + 3 say. Useful for auto correct portion of history and for
// attaching the unary op around the last operand
int m_lastOpStartIndex; // index of the beginning of the last operand added to the history
int m_lastOpStartIndex; // index of the beginning of the last operand added to the history
int m_lastBinOpStartIndex; // index of the beginning of the last binary operator added to the history
std::array<int, MAXPRECDEPTH> m_operandIndices; // Stack of index of opnd's beginning for each '('. A parallel array to m_hnoParNum, but abstracted independently of that
std::array<int, MAXPRECDEPTH>
m_operandIndices; // Stack of index of opnd's beginning for each '('. A parallel array to m_hnoParNum, but abstracted independently of that
int m_curOperandIndex; // Stack index for the above stack
bool m_bLastOpndBrace; // iff the last opnd in history is already braced so we can avoid putting another one for unary operator
bool m_bLastOpndBrace; // iff the last opnd in history is already braced so we can avoid putting another one for unary operator
wchar_t m_decimalSymbol;
std::shared_ptr<CalculatorVector <std::pair<std::wstring, int>>> m_spTokens;
std::shared_ptr<CalculatorVector<std::pair<std::wstring, int>>> m_spTokens;
std::shared_ptr<CalculatorVector<std::shared_ptr<IExpressionCommand>>> m_spCommands;
private:

View File

@@ -7,12 +7,15 @@
#include "../ExpressionCommandInterface.h"
// Callback interface to be implemented by the clients of CCalcEngine
class ICalcDisplay {
class ICalcDisplay
{
public:
virtual void SetPrimaryDisplay(const std::wstring& pszText, bool isError) = 0;
virtual void SetIsInError(bool isInError) = 0;
virtual void SetExpressionDisplay(_Inout_ std::shared_ptr<CalculatorVector<std::pair<std::wstring, int>>> const &tokens, _Inout_ std::shared_ptr<CalculatorVector<std::shared_ptr<IExpressionCommand>>> const &commands) = 0;
virtual void SetParenDisplayText(const std::wstring& pszText) = 0;
virtual void SetExpressionDisplay(
_Inout_ std::shared_ptr<CalculatorVector<std::pair<std::wstring, int>>> const& tokens,
_Inout_ std::shared_ptr<CalculatorVector<std::shared_ptr<IExpressionCommand>>> const& commands) = 0;
virtual void SetParenthesisNumber(_In_ unsigned int count) = 0;
virtual void OnNoRightParenAdded() = 0;
virtual void MaxDigitsReached() = 0; // not an error but still need to inform UI layer.
virtual void BinaryOperatorReceived() = 0;

View File

@@ -4,8 +4,12 @@
#pragma once
// Callback interface to be implemented by the clients of CCalcEngine if they require equation history
class IHistoryDisplay {
class IHistoryDisplay
{
public:
virtual ~IHistoryDisplay() {};
virtual unsigned int AddToHistory(_In_ std::shared_ptr<CalculatorVector <std::pair<std::wstring, int>>> const &tokens, _In_ std::shared_ptr<CalculatorVector<std::shared_ptr<IExpressionCommand>>> const &commands, _In_ std::wstring_view result) = 0;
virtual ~IHistoryDisplay(){};
virtual unsigned int AddToHistory(
_In_ std::shared_ptr<CalculatorVector<std::pair<std::wstring, int>>> const& tokens,
_In_ std::shared_ptr<CalculatorVector<std::shared_ptr<IExpressionCommand>>> const& commands,
_In_ std::wstring_view result) = 0;
};

View File

@@ -3,6 +3,7 @@
#pragma once
#include <vector>
#include "Ratpack/ratpak.h"
namespace CalcEngine

View File

@@ -4,7 +4,8 @@
#pragma once
// This is expected to be in same order as IDM_HEX, IDM_DEC, IDM_OCT, IDM_BIN
enum eRADIX_TYPE {
enum eRADIX_TYPE
{
HEX_RADIX,
DEC_RADIX,
OCT_RADIX,

View File

@@ -13,6 +13,7 @@ namespace CalcEngine::RationalMath
Rational Pow(Rational const& base, Rational const& pow);
Rational Root(Rational const& base, Rational const& root);
Rational Fact(Rational const& rat);
Rational Mod(Rational const& a, Rational const& b);
Rational Exp(Rational const& rat);
Rational Log(Rational const& rat);

View File

@@ -0,0 +1,14 @@
target_sources(CalcManager PRIVATE
basex.cpp
conv.cpp
exp.cpp
fact.cpp
itrans.cpp
itransh.cpp
logic.cpp
num.cpp
rat.cpp
support.cpp
trans.cpp
transh.cpp
)

View File

@@ -41,46 +41,45 @@ typedef int32_t ResultCode;
// CALC_E_DIVIDEBYZERO
//
// The current operation would require a divide by zero to complete
#define CALC_E_DIVIDEBYZERO ((uint32_t)0x80000000)
#define CALC_E_DIVIDEBYZERO ((uint32_t)0x80000000)
// CALC_E_DOMAIN
//
// The given input is not within the domain of this function
#define CALC_E_DOMAIN ((uint32_t)0x80000001)
#define CALC_E_DOMAIN ((uint32_t)0x80000001)
// CALC_E_INDEFINITE
//
// The result of this function is undefined
#define CALC_E_INDEFINITE ((uint32_t)0x80000002)
#define CALC_E_INDEFINITE ((uint32_t)0x80000002)
// CALC_E_POSINFINITY
//
// The result of this function is Positive Infinity.
#define CALC_E_POSINFINITY ((uint32_t)0x80000003)
#define CALC_E_POSINFINITY ((uint32_t)0x80000003)
// CALC_E_NEGINFINITY
//
// The result of this function is Negative Infinity
#define CALC_E_NEGINFINITY ((uint32_t)0x80000004)
#define CALC_E_NEGINFINITY ((uint32_t)0x80000004)
// CALC_E_INVALIDRANGE
//
// The given input is within the domain of the function but is beyond
// the range for which calc can successfully compute the answer
#define CALC_E_INVALIDRANGE ((uint32_t)0x80000006)
#define CALC_E_INVALIDRANGE ((uint32_t)0x80000006)
// CALC_E_OUTOFMEMORY
//
// There is not enough free memory to complete the requested function
#define CALC_E_OUTOFMEMORY ((uint32_t)0x80000007)
#define CALC_E_OUTOFMEMORY ((uint32_t)0x80000007)
// CALC_E_OVERFLOW
//
// The result of this operation is an overflow
#define CALC_E_OVERFLOW ((uint32_t)0x80000008)
#define CALC_E_OVERFLOW ((uint32_t)0x80000008)
// CALC_E_NORESULT
//
// The result of this operation is undefined
#define CALC_E_NORESULT ((uint32_t)0x80000009)
#define CALC_E_NORESULT ((uint32_t)0x80000009)

View File

@@ -14,10 +14,10 @@
// internal base is a power of 2.
//
//-----------------------------------------------------------------------------
#include "pch.h"
#include "ratpak.h"
#include <cstring> // for memmove
void _mulnumx( PNUMBER *pa, PNUMBER b );
void _mulnumx(PNUMBER* pa, PNUMBER b);
//----------------------------------------------------------------------------
//
@@ -34,30 +34,30 @@ void _mulnumx( PNUMBER *pa, PNUMBER b );
//
//----------------------------------------------------------------------------
void __inline mulnumx( PNUMBER *pa, PNUMBER b )
void mulnumx(PNUMBER* pa, PNUMBER b)
{
if ( b->cdigit > 1 || b->mant[0] != 1 || b->exp != 0 )
{
if (b->cdigit > 1 || b->mant[0] != 1 || b->exp != 0)
{
// If b is not one we multiply
if ( (*pa)->cdigit > 1 || (*pa)->mant[0] != 1 || (*pa)->exp != 0 )
{
if ((*pa)->cdigit > 1 || (*pa)->mant[0] != 1 || (*pa)->exp != 0)
{
// pa and b are both non-one.
_mulnumx( pa, b );
}
_mulnumx(pa, b);
}
else
{
{
// if pa is one and b isn't just copy b. and adjust the sign.
int32_t sign = (*pa)->sign;
DUPNUM(*pa,b);
DUPNUM(*pa, b);
(*pa)->sign *= sign;
}
}
}
else
{
{
// B is +/- 1, But we do have to set the sign.
(*pa)->sign *= b->sign;
}
}
}
//----------------------------------------------------------------------------
@@ -76,29 +76,29 @@ void __inline mulnumx( PNUMBER *pa, PNUMBER b )
//
//----------------------------------------------------------------------------
void _mulnumx( PNUMBER *pa, PNUMBER b )
void _mulnumx(PNUMBER* pa, PNUMBER b)
{
PNUMBER c= nullptr; // c will contain the result.
PNUMBER a= nullptr; // a is the dereferenced number pointer from *pa
MANTTYPE *ptra; // ptra is a pointer to the mantissa of a.
MANTTYPE *ptrb; // ptrb is a pointer to the mantissa of b.
MANTTYPE *ptrc; // ptrc is a pointer to the mantissa of c.
MANTTYPE *ptrcoffset; // ptrcoffset, is the anchor location of the next
// single digit multiply partial result.
int32_t iadigit=0; // Index of digit being used in the first number.
int32_t ibdigit=0; // Index of digit being used in the second number.
MANTTYPE da=0; // da is the digit from the fist number.
TWO_MANTTYPE cy=0; // cy is the carry resulting from the addition of
// a multiplied row into the result.
TWO_MANTTYPE mcy=0; // mcy is the resultant from a single
// multiply, AND the carry of that multiply.
int32_t icdigit=0; // Index of digit being calculated in final result.
PNUMBER c = nullptr; // c will contain the result.
PNUMBER a = nullptr; // a is the dereferenced number pointer from *pa
MANTTYPE* ptra; // ptra is a pointer to the mantissa of a.
MANTTYPE* ptrb; // ptrb is a pointer to the mantissa of b.
MANTTYPE* ptrc; // ptrc is a pointer to the mantissa of c.
MANTTYPE* ptrcoffset; // ptrcoffset, is the anchor location of the next
// single digit multiply partial result.
int32_t iadigit = 0; // Index of digit being used in the first number.
int32_t ibdigit = 0; // Index of digit being used in the second number.
MANTTYPE da = 0; // da is the digit from the fist number.
TWO_MANTTYPE cy = 0; // cy is the carry resulting from the addition of
// a multiplied row into the result.
TWO_MANTTYPE mcy = 0; // mcy is the resultant from a single
// multiply, AND the carry of that multiply.
int32_t icdigit = 0; // Index of digit being calculated in final result.
a=*pa;
a = *pa;
ibdigit = a->cdigit + b->cdigit - 1;
createnum( c, ibdigit + 1 );
createnum(c, ibdigit + 1);
c->cdigit = ibdigit;
c->sign = a->sign * b->sign;
@@ -106,36 +106,35 @@ void _mulnumx( PNUMBER *pa, PNUMBER b )
ptra = a->mant;
ptrcoffset = c->mant;
for ( iadigit = a->cdigit; iadigit > 0; iadigit-- )
for (iadigit = a->cdigit; iadigit > 0; iadigit--)
{
da = *ptra++;
da = *ptra++;
ptrb = b->mant;
// Shift ptrc, and ptrcoffset, one for each digit
ptrc = ptrcoffset++;
for ( ibdigit = b->cdigit; ibdigit > 0; ibdigit-- )
for (ibdigit = b->cdigit; ibdigit > 0; ibdigit--)
{
cy = 0;
mcy = (uint64_t)da * (*ptrb);
if ( mcy )
if (mcy)
{
icdigit = 0;
if ( ibdigit == 1 && iadigit == 1 )
if (ibdigit == 1 && iadigit == 1)
{
c->cdigit++;
}
}
// If result is nonzero, or while result of carry is nonzero...
while ( mcy || cy )
while (mcy || cy)
{
// update carry from addition(s) and multiply.
cy += (TWO_MANTTYPE)ptrc[icdigit]+((uint32_t)mcy&((uint32_t)~BASEX));
cy += (TWO_MANTTYPE)ptrc[icdigit] + ((uint32_t)mcy & ((uint32_t)~BASEX));
// update result digit from
ptrc[icdigit++]=(MANTTYPE)((uint32_t)cy&((uint32_t)~BASEX));
ptrc[icdigit++] = (MANTTYPE)((uint32_t)cy & ((uint32_t)~BASEX));
// update carries from
mcy >>= BASEXPWR;
@@ -144,19 +143,18 @@ void _mulnumx( PNUMBER *pa, PNUMBER b )
ptrb++;
ptrc++;
}
}
// prevent different kinds of zeros, by stripping leading duplicate zeros.
// digits are in order of increasing significance.
while ( c->cdigit > 1 && c->mant[c->cdigit-1] == 0 )
{
while (c->cdigit > 1 && c->mant[c->cdigit - 1] == 0)
{
c->cdigit--;
}
}
destroynum( *pa );
*pa=c;
destroynum(*pa);
*pa = c;
}
//-----------------------------------------------------------------------------
//
@@ -174,34 +172,33 @@ void _mulnumx( PNUMBER *pa, PNUMBER b )
//
//-----------------------------------------------------------------------------
void numpowi32x( _Inout_ PNUMBER *proot, _In_ int32_t power )
void numpowi32x(_Inout_ PNUMBER* proot, _In_ int32_t power)
{
PNUMBER lret = i32tonum( 1, BASEX );
PNUMBER lret = i32tonum(1, BASEX);
// Once the power remaining is zero we are done.
while ( power > 0 )
{
while (power > 0)
{
// If this bit in the power decomposition is on, multiply the result
// by the root number.
if ( power & 1 )
{
mulnumx( &lret, *proot );
}
if (power & 1)
{
mulnumx(&lret, *proot);
}
// multiply the root number by itself to scale for the next bit (i.e.
// square it.
mulnumx( proot, *proot );
mulnumx(proot, *proot);
// move the next bit of the power into place.
power >>= 1;
}
destroynum( *proot );
*proot=lret;
}
destroynum(*proot);
*proot = lret;
}
void _divnumx( PNUMBER *pa, PNUMBER b, int32_t precision);
void _divnumx(PNUMBER* pa, PNUMBER b, int32_t precision);
//----------------------------------------------------------------------------
//
@@ -218,30 +215,30 @@ void _divnumx( PNUMBER *pa, PNUMBER b, int32_t precision);
//
//----------------------------------------------------------------------------
void __inline divnumx( PNUMBER *pa, PNUMBER b, int32_t precision)
void divnumx(PNUMBER* pa, PNUMBER b, int32_t precision)
{
if ( b->cdigit > 1 || b->mant[0] != 1 || b->exp != 0 )
{
if (b->cdigit > 1 || b->mant[0] != 1 || b->exp != 0)
{
// b is not one.
if ( (*pa)->cdigit > 1 || (*pa)->mant[0] != 1 || (*pa)->exp != 0 )
{
if ((*pa)->cdigit > 1 || (*pa)->mant[0] != 1 || (*pa)->exp != 0)
{
// pa and b are both not one.
_divnumx( pa, b, precision);
}
_divnumx(pa, b, precision);
}
else
{
{
// if pa is one and b is not one, just copy b, and adjust the sign.
int32_t sign = (*pa)->sign;
DUPNUM(*pa,b);
DUPNUM(*pa, b);
(*pa)->sign *= sign;
}
}
}
else
{
{
// b is one so don't divide, but set the sign.
(*pa)->sign *= b->sign;
}
}
}
//----------------------------------------------------------------------------
@@ -257,111 +254,109 @@ void __inline divnumx( PNUMBER *pa, PNUMBER b, int32_t precision)
//
//----------------------------------------------------------------------------
void _divnumx( PNUMBER *pa, PNUMBER b, int32_t precision)
void _divnumx(PNUMBER* pa, PNUMBER b, int32_t precision)
{
PNUMBER a= nullptr; // a is the dereferenced number pointer from *pa
PNUMBER c= nullptr; // c will contain the result.
PNUMBER a = nullptr; // a is the dereferenced number pointer from *pa
PNUMBER c = nullptr; // c will contain the result.
PNUMBER lasttmp = nullptr; // lasttmp allows a backup when the algorithm
// guesses one bit too far.
// guesses one bit too far.
PNUMBER tmp = nullptr; // current guess being worked on for divide.
PNUMBER rem = nullptr; // remainder after applying guess.
int32_t cdigits; // count of digits for answer.
MANTTYPE *ptrc; // ptrc is a pointer to the mantissa of c.
MANTTYPE* ptrc; // ptrc is a pointer to the mantissa of c.
int32_t thismax = precision + g_ratio; // set a maximum number of internal digits
// to shoot for in the divide.
// to shoot for in the divide.
a=*pa;
if ( thismax < a->cdigit )
{
a = *pa;
if (thismax < a->cdigit)
{
// a has more digits than precision specified, bump up digits to shoot
// for.
thismax = a->cdigit;
}
}
if ( thismax < b->cdigit )
{
if (thismax < b->cdigit)
{
// b has more digits than precision specified, bump up digits to shoot
// for.
thismax = b->cdigit;
}
}
// Create c (the divide answer) and set up exponent and sign.
createnum( c, thismax + 1 );
c->exp = (a->cdigit+a->exp) - (b->cdigit+b->exp) + 1;
createnum(c, thismax + 1);
c->exp = (a->cdigit + a->exp) - (b->cdigit + b->exp) + 1;
c->sign = a->sign * b->sign;
ptrc = c->mant + thismax;
cdigits = 0;
DUPNUM( rem, a );
DUPNUM(rem, a);
rem->sign = b->sign;
rem->exp = b->cdigit + b->exp - rem->cdigit;
while ( cdigits++ < thismax && !zernum(rem) )
{
while (cdigits++ < thismax && !zernum(rem))
{
int32_t digit = 0;
*ptrc = 0;
while ( !lessnum( rem, b ) )
{
while (!lessnum(rem, b))
{
digit = 1;
DUPNUM( tmp, b );
destroynum( lasttmp );
lasttmp=i32tonum( 0, BASEX );
while ( lessnum( tmp, rem ) )
{
destroynum( lasttmp );
DUPNUM(lasttmp,tmp);
addnum( &tmp, tmp, BASEX );
DUPNUM(tmp, b);
destroynum(lasttmp);
lasttmp = i32tonum(0, BASEX);
while (lessnum(tmp, rem))
{
destroynum(lasttmp);
DUPNUM(lasttmp, tmp);
addnum(&tmp, tmp, BASEX);
digit *= 2;
}
if ( lessnum( rem, tmp ) )
{
}
if (lessnum(rem, tmp))
{
// too far, back up...
destroynum( tmp );
destroynum(tmp);
digit /= 2;
tmp=lasttmp;
lasttmp= nullptr;
}
tmp = lasttmp;
lasttmp = nullptr;
}
tmp->sign *= -1;
addnum( &rem, tmp, BASEX );
destroynum( tmp );
destroynum( lasttmp );
addnum(&rem, tmp, BASEX);
destroynum(tmp);
destroynum(lasttmp);
*ptrc |= digit;
}
}
rem->exp++;
ptrc--;
}
}
cdigits--;
if ( c->mant != ++ptrc )
{
memmove( c->mant, ptrc, (int)(cdigits*sizeof(MANTTYPE)) );
}
if (c->mant != ++ptrc)
{
memmove(c->mant, ptrc, (int)(cdigits * sizeof(MANTTYPE)));
}
if ( !cdigits )
{
if (!cdigits)
{
// A zero, make sure no weird exponents creep in
c->exp = 0;
c->cdigit = 1;
}
}
else
{
{
c->cdigit = cdigits;
c->exp -= cdigits;
// prevent different kinds of zeros, by stripping leading duplicate
// zeros. digits are in order of increasing significance.
while ( c->cdigit > 1 && c->mant[c->cdigit-1] == 0 )
{
while (c->cdigit > 1 && c->mant[c->cdigit - 1] == 0)
{
c->cdigit--;
}
}
}
destroynum( rem );
destroynum(rem);
destroynum( *pa );
*pa=c;
destroynum(*pa);
*pa = c;
}

File diff suppressed because it is too large Load Diff

View File

@@ -14,10 +14,8 @@
//
//
//-----------------------------------------------------------------------------
#include "pch.h"
#include "ratpak.h"
//-----------------------------------------------------------------------------
//
// FUNCTION: exprat
@@ -41,63 +39,63 @@
//
//-----------------------------------------------------------------------------
void _exprat( PRAT *px, int32_t precision)
void _exprat(PRAT* px, int32_t precision)
{
CREATETAYLOR();
addnum(&(pret->pp),num_one, BASEX);
addnum(&(pret->pq),num_one, BASEX);
DUPRAT(thisterm,pret);
addnum(&(pret->pp), num_one, BASEX);
addnum(&(pret->pq), num_one, BASEX);
DUPRAT(thisterm, pret);
n2=i32tonum(0L, BASEX);
n2 = i32tonum(0L, BASEX);
do {
do
{
NEXTTERM(*px, INC(n2) DIVNUM(n2), precision);
} while ( !SMALL_ENOUGH_RAT( thisterm, precision) );
} while (!SMALL_ENOUGH_RAT(thisterm, precision));
DESTROYTAYLOR();
}
void exprat( PRAT *px, uint32_t radix, int32_t precision)
void exprat(PRAT* px, uint32_t radix, int32_t precision)
{
PRAT pwr= nullptr;
PRAT pint= nullptr;
PRAT pwr = nullptr;
PRAT pint = nullptr;
int32_t intpwr;
if ( rat_gt( *px, rat_max_exp, precision) || rat_lt( *px, rat_min_exp, precision) )
{
if (rat_gt(*px, rat_max_exp, precision) || rat_lt(*px, rat_min_exp, precision))
{
// Don't attempt exp of anything large.
throw( CALC_E_DOMAIN );
}
throw(CALC_E_DOMAIN);
}
DUPRAT(pwr,rat_exp);
DUPRAT(pint,*px);
DUPRAT(pwr, rat_exp);
DUPRAT(pint, *px);
intrat(&pint, radix, precision);
intpwr = rattoi32(pint, radix, precision);
ratpowi32( &pwr, intpwr, precision);
ratpowi32(&pwr, intpwr, precision);
subrat(px, pint, precision);
// It just so happens to be an integral power of e.
if ( rat_gt( *px, rat_negsmallest, precision) && rat_lt( *px, rat_smallest, precision) )
{
DUPRAT(*px,pwr);
}
if (rat_gt(*px, rat_negsmallest, precision) && rat_lt(*px, rat_smallest, precision))
{
DUPRAT(*px, pwr);
}
else
{
{
_exprat(px, precision);
mulrat(px, pwr, precision);
}
}
destroyrat( pwr );
destroyrat( pint );
destroyrat(pwr);
destroyrat(pint);
}
//-----------------------------------------------------------------------------
//
// FUNCTION: lograt, _lograt
@@ -125,7 +123,7 @@ void exprat( PRAT *px, uint32_t radix, int32_t precision)
//
//-----------------------------------------------------------------------------
void _lograt( PRAT *px, int32_t precision)
void _lograt(PRAT* px, int32_t precision)
{
CREATETAYLOR();
@@ -134,76 +132,75 @@ void _lograt( PRAT *px, int32_t precision)
// sub one from x
(*px)->pq->sign *= -1;
addnum(&((*px)->pp),(*px)->pq, BASEX);
addnum(&((*px)->pp), (*px)->pq, BASEX);
(*px)->pq->sign *= -1;
DUPRAT(pret,*px);
DUPRAT(thisterm,*px);
DUPRAT(pret, *px);
DUPRAT(thisterm, *px);
n2=i32tonum(1L, BASEX);
n2 = i32tonum(1L, BASEX);
(*px)->pp->sign *= -1;
do {
do
{
NEXTTERM(*px, MULNUM(n2) INC(n2) DIVNUM(n2), precision);
TRIMTOP(*px, precision);
} while ( !SMALL_ENOUGH_RAT( thisterm, precision) );
} while (!SMALL_ENOUGH_RAT(thisterm, precision));
DESTROYTAYLOR();
}
void lograt( PRAT *px, int32_t precision)
void lograt(PRAT* px, int32_t precision)
{
bool fneglog;
PRAT pwr = nullptr; // pwr is the large scaling factor.
PRAT offset = nullptr; // offset is the incremental scaling factor.
PRAT pwr = nullptr; // pwr is the large scaling factor.
PRAT offset = nullptr; // offset is the incremental scaling factor.
// Check for someone taking the log of zero or a negative number.
if ( rat_le( *px, rat_zero, precision) )
{
throw( CALC_E_DOMAIN );
}
if (rat_le(*px, rat_zero, precision))
{
throw(CALC_E_DOMAIN);
}
// Get number > 1, for scaling
fneglog = rat_lt( *px, rat_one, precision);
if ( fneglog )
{
fneglog = rat_lt(*px, rat_one, precision);
if (fneglog)
{
// WARNING: This is equivalent to doing *px = 1 / *px
PNUMBER pnumtemp= nullptr;
PNUMBER pnumtemp = nullptr;
pnumtemp = (*px)->pp;
(*px)->pp = (*px)->pq;
(*px)->pq = pnumtemp;
}
}
// Scale the number within BASEX factor of 1, for the large scale.
// log(x*2^(BASEXPWR*k)) = BASEXPWR*k*log(2)+log(x)
if ( LOGRAT2(*px) > 1 )
{
if (LOGRAT2(*px) > 1)
{
// Take advantage of px's base BASEX to scale quickly down to
// a reasonable range.
int32_t intpwr;
intpwr=LOGRAT2(*px)-1;
intpwr = LOGRAT2(*px) - 1;
(*px)->pq->exp += intpwr;
pwr=i32torat(intpwr*BASEXPWR);
pwr = i32torat(intpwr * BASEXPWR);
mulrat(&pwr, ln_two, precision);
// ln(x+e)-ln(x) looks close to e when x is close to one using some
// expansions. This means we can trim past precision digits+1.
TRIMTOP(*px, precision);
}
}
else
{
DUPRAT(pwr,rat_zero);
}
{
DUPRAT(pwr, rat_zero);
}
DUPRAT(offset,rat_zero);
DUPRAT(offset, rat_zero);
// Scale the number between 1 and e_to_one_half, for the small scale.
while ( rat_gt( *px, e_to_one_half, precision) )
{
divrat( px, e_to_one_half, precision);
addrat( &offset, rat_one, precision);
}
while (rat_gt(*px, e_to_one_half, precision))
{
divrat(px, e_to_one_half, precision);
addrat(&offset, rat_one, precision);
}
_lograt(px, precision);
@@ -218,16 +215,16 @@ void lograt( PRAT *px, int32_t precision)
trimit(px, precision);
// If number started out < 1 rescale answer to negative.
if ( fneglog )
{
if (fneglog)
{
(*px)->pp->sign *= -1;
}
}
destroyrat(offset);
destroyrat(pwr);
}
void log10rat( PRAT *px, int32_t precision)
void log10rat(PRAT* px, int32_t precision)
{
lograt(px, precision);
@@ -247,7 +244,7 @@ bool IsEven(PRAT x, uint32_t radix, int32_t precision)
fracrat(&tmp, radix, precision);
addrat(&tmp, tmp, precision);
subrat(&tmp, rat_one, precision);
if ( rat_lt( tmp, rat_zero, precision))
if (rat_lt(tmp, rat_zero, precision))
{
bRet = true;
}
@@ -270,7 +267,7 @@ bool IsEven(PRAT x, uint32_t radix, int32_t precision)
//
//
//---------------------------------------------------------------------------
void powrat(PRAT *px, PRAT y, uint32_t radix, int32_t precision)
void powrat(PRAT* px, PRAT y, uint32_t radix, int32_t precision)
{
// Handle cases where px or y is 0 by calling powratcomp directly
if (zerrat(*px) || zerrat(y))
@@ -297,12 +294,12 @@ void powrat(PRAT *px, PRAT y, uint32_t radix, int32_t precision)
}
}
void powratNumeratorDenominator(PRAT *px, PRAT y, uint32_t radix, int32_t precision)
void powratNumeratorDenominator(PRAT* px, PRAT y, uint32_t radix, int32_t precision)
{
// Prepare rationals
PRAT yNumerator = nullptr;
PRAT yDenominator = nullptr;
DUPRAT(yNumerator, rat_zero); // yNumerator->pq is 1 one
DUPRAT(yNumerator, rat_zero); // yNumerator->pq is 1 one
DUPRAT(yDenominator, rat_zero); // yDenominator->pq is 1 one
DUPNUM(yNumerator->pp, y->pp);
DUPNUM(yDenominator->pp, y->pq);
@@ -406,84 +403,82 @@ void powratNumeratorDenominator(PRAT *px, PRAT y, uint32_t radix, int32_t precis
//
//
//---------------------------------------------------------------------------
void powratcomp(PRAT *px, PRAT y, uint32_t radix, int32_t precision)
void powratcomp(PRAT* px, PRAT y, uint32_t radix, int32_t precision)
{
int32_t sign = ((*px)->pp->sign * (*px)->pq->sign);
int32_t sign = SIGN(*px);
// Take the absolute value
(*px)->pp->sign = 1;
(*px)->pq->sign = 1;
if ( zerrat( *px ) )
{
if (zerrat(*px))
{
// *px is zero.
if ( rat_lt( y, rat_zero, precision) )
{
throw( CALC_E_DOMAIN );
}
else if ( zerrat( y ) )
{
// *px and y are both zero, special case a 1 return.
DUPRAT(*px,rat_one);
// Ensure sign is positive.
sign = 1;
}
}
else
if (rat_lt(y, rat_zero, precision))
{
PRAT pxint= nullptr;
DUPRAT(pxint,*px);
subrat(&pxint, rat_one, precision);
if ( rat_gt( pxint, rat_negsmallest, precision) &&
rat_lt( pxint, rat_smallest, precision) && ( sign == 1 ) )
{
// *px is one, special case a 1 return.
DUPRAT(*px,rat_one);
throw(CALC_E_DOMAIN);
}
else if (zerrat(y))
{
// *px and y are both zero, special case a 1 return.
DUPRAT(*px, rat_one);
// Ensure sign is positive.
sign = 1;
}
}
}
else
{
PRAT pxint = nullptr;
DUPRAT(pxint, *px);
subrat(&pxint, rat_one, precision);
if (rat_gt(pxint, rat_negsmallest, precision) && rat_lt(pxint, rat_smallest, precision) && (sign == 1))
{
// *px is one, special case a 1 return.
DUPRAT(*px, rat_one);
// Ensure sign is positive.
sign = 1;
}
else
{
{
// Only do the exp if the number isn't zero or one
PRAT podd = nullptr;
DUPRAT(podd,y);
DUPRAT(podd, y);
fracrat(&podd, radix, precision);
if ( rat_gt( podd, rat_negsmallest, precision) && rat_lt( podd, rat_smallest, precision) )
{
if (rat_gt(podd, rat_negsmallest, precision) && rat_lt(podd, rat_smallest, precision))
{
// If power is an integer let ratpowi32 deal with it.
PRAT iy = nullptr;
int32_t inty;
DUPRAT(iy,y);
DUPRAT(iy, y);
subrat(&iy, podd, precision);
inty = rattoi32(iy, radix, precision);
PRAT plnx = nullptr;
DUPRAT(plnx,*px);
DUPRAT(plnx, *px);
lograt(&plnx, precision);
mulrat(&plnx, iy, precision);
if ( rat_gt( plnx, rat_max_exp, precision) || rat_lt( plnx, rat_min_exp, precision) )
{
if (rat_gt(plnx, rat_max_exp, precision) || rat_lt(plnx, rat_min_exp, precision))
{
// Don't attempt exp of anything large or small.A
destroyrat(plnx);
destroyrat(iy);
destroyrat(pxint);
destroyrat(podd);
throw( CALC_E_DOMAIN );
}
throw(CALC_E_DOMAIN);
}
destroyrat(plnx);
ratpowi32(px, inty, precision);
if ( ( inty & 1 ) == 0 )
{
sign=1;
}
destroyrat(iy);
}
else
if ((inty & 1) == 0)
{
sign = 1;
}
destroyrat(iy);
}
else
{
// power is a fraction
if ( sign == -1 )
{
if (sign == -1)
{
// Need to throw an error if the exponent has an even denominator.
// As a first step, the numerator and denominator must be divided by 2 as many times as
// possible, so that 2/6 is allowed.
@@ -493,7 +488,7 @@ void powratcomp(PRAT *px, PRAT y, uint32_t radix, int32_t precision)
bool fBadExponent = false;
// Get the numbers in arbitrary precision rational number format
DUPRAT(pNumerator, rat_zero); // pNumerator->pq is 1 one
DUPRAT(pNumerator, rat_zero); // pNumerator->pq is 1 one
DUPRAT(pDenominator, rat_zero); // pDenominator->pq is 1 one
DUPNUM(pNumerator->pp, y->pp);
@@ -502,39 +497,39 @@ void powratcomp(PRAT *px, PRAT y, uint32_t radix, int32_t precision)
pDenominator->pp->sign = 1;
while (IsEven(pNumerator, radix, precision) && IsEven(pDenominator, radix, precision)) // both Numerator & denominator is even
{
{
divrat(&pNumerator, rat_two, precision);
divrat(&pDenominator, rat_two, precision);
}
}
if (IsEven(pDenominator, radix, precision)) // denominator is still even
{
fBadExponent = true;
}
{
fBadExponent = true;
}
if (IsEven(pNumerator, radix, precision)) // numerator is still even
{
{
sign = 1;
}
}
destroyrat(pNumerator);
destroyrat(pDenominator);
if (fBadExponent)
{
throw( CALC_E_DOMAIN );
}
}
else
{
throw(CALC_E_DOMAIN);
}
}
else
{
// If the exponent is not odd disregard the sign.
sign = 1;
}
}
lograt(px, precision);
mulrat(px, y, precision);
exprat(px, radix, precision);
}
destroyrat(podd);
}
destroyrat(pxint);
}
destroyrat(podd);
}
destroyrat(pxint);
}
(*px)->pp->sign *= sign;
}

View File

@@ -1,4 +1,4 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
//-----------------------------------------------------------------------------
@@ -13,11 +13,9 @@
// Contains fact(orial) and supporting _gamma functions.
//
//-----------------------------------------------------------------------------
#include "pch.h"
#include "ratpak.h"
#define ABSRAT(x) (((x)->pp->sign=1),((x)->pq->sign=1))
#define ABSRAT(x) (((x)->pp->sign = 1), ((x)->pq->sign = 1))
#define NEGATE(x) ((x)->pp->sign *= -1)
//-----------------------------------------------------------------------------
@@ -56,37 +54,36 @@
//
//-----------------------------------------------------------------------------
void _gamma( PRAT *pn, uint32_t radix, int32_t precision)
void _gamma(PRAT* pn, uint32_t radix, int32_t precision)
{
PRAT factorial= nullptr;
PNUMBER count= nullptr;
PRAT tmp= nullptr;
PRAT one_pt_five= nullptr;
PRAT a= nullptr;
PRAT a2= nullptr;
PRAT term= nullptr;
PRAT sum= nullptr;
PRAT err= nullptr;
PRAT mpy= nullptr;
PRAT factorial = nullptr;
PNUMBER count = nullptr;
PRAT tmp = nullptr;
PRAT one_pt_five = nullptr;
PRAT a = nullptr;
PRAT a2 = nullptr;
PRAT term = nullptr;
PRAT sum = nullptr;
PRAT err = nullptr;
PRAT mpy = nullptr;
PRAT ratprec = nullptr;
PRAT ratRadix = nullptr;
int32_t oldprec;
// Set up constants and initial conditions
oldprec = precision;
ratprec = i32torat( oldprec );
ratprec = i32torat(oldprec);
// Find the best 'A' for convergence to the required precision.
a=i32torat( radix );
a = i32torat(radix);
lograt(&a, precision);
mulrat(&a, ratprec, precision);
// Really is -ln(n)+1, but -ln(n) will be < 1
// if we scale n between 0.5 and 1.5
addrat(&a, rat_two, precision);
DUPRAT(tmp,a);
DUPRAT(tmp, a);
lograt(&tmp, precision);
mulrat(&tmp, *pn, precision);
addrat(&a, tmp, precision);
@@ -95,85 +92,85 @@ void _gamma( PRAT *pn, uint32_t radix, int32_t precision)
// Calculate the necessary bump in precision and up the precision.
// The following code is equivalent to
// precision += ln(exp(a)*pow(a,n+1.5))-ln(radix));
DUPRAT(tmp,*pn);
one_pt_five=i32torat( 3L );
divrat( &one_pt_five, rat_two, precision);
addrat( &tmp, one_pt_five, precision);
DUPRAT(term,a);
powratcomp( &term, tmp, radix, precision);
DUPRAT( tmp, a );
exprat( &tmp, radix, precision);
mulrat( &term, tmp, precision);
lograt( &term, precision);
DUPRAT(tmp, *pn);
one_pt_five = i32torat(3L);
divrat(&one_pt_five, rat_two, precision);
addrat(&tmp, one_pt_five, precision);
DUPRAT(term, a);
powratcomp(&term, tmp, radix, precision);
DUPRAT(tmp, a);
exprat(&tmp, radix, precision);
mulrat(&term, tmp, precision);
lograt(&term, precision);
ratRadix = i32torat(radix);
DUPRAT(tmp,ratRadix);
lograt( &tmp, precision);
subrat( &term, tmp, precision);
precision += rattoi32( term, radix, precision);
DUPRAT(tmp, ratRadix);
lograt(&tmp, precision);
subrat(&term, tmp, precision);
precision += rattoi32(term, radix, precision);
// Set up initial terms for series, refer to series in above comment block.
DUPRAT(factorial,rat_one); // Start factorial out with one
count = i32tonum( 0L, BASEX );
DUPRAT(factorial, rat_one); // Start factorial out with one
count = i32tonum(0L, BASEX);
DUPRAT(mpy,a);
powratcomp(&mpy,*pn, radix, precision);
DUPRAT(mpy, a);
powratcomp(&mpy, *pn, radix, precision);
// a2=a^2
DUPRAT(a2,a);
DUPRAT(a2, a);
mulrat(&a2, a, precision);
// sum=(1/n)-(a/(n+1))
DUPRAT(sum,rat_one);
DUPRAT(sum, rat_one);
divrat(&sum, *pn, precision);
DUPRAT(tmp,*pn);
DUPRAT(tmp, *pn);
addrat(&tmp, rat_one, precision);
DUPRAT(term,a);
DUPRAT(term, a);
divrat(&term, tmp, precision);
subrat(&sum, term, precision);
DUPRAT(err,ratRadix);
DUPRAT(err, ratRadix);
NEGATE(ratprec);
powratcomp(&err,ratprec, radix, precision);
powratcomp(&err, ratprec, radix, precision);
divrat(&err, ratRadix, precision);
// Just get something not tiny in term
DUPRAT(term, rat_two );
DUPRAT(term, rat_two);
// Loop until precision is reached, or asked to halt.
while ( !zerrat( term ) && rat_gt( term, err, precision) )
{
while (!zerrat(term) && rat_gt(term, err, precision))
{
addrat(pn, rat_two, precision);
// WARNING: mixing numbers and rationals here.
// for speed and efficiency.
INC(count);
mulnumx(&(factorial->pp),count);
mulnumx(&(factorial->pp), count);
INC(count)
mulnumx(&(factorial->pp),count);
mulnumx(&(factorial->pp), count);
divrat(&factorial, a2, precision);
DUPRAT(tmp,*pn);
addrat( &tmp, rat_one, precision);
DUPRAT(tmp, *pn);
addrat(&tmp, rat_one, precision);
destroyrat(term);
createrat(term);
DUPNUM(term->pp,count);
DUPNUM(term->pq,num_one);
addrat( &term, rat_one, precision);
mulrat( &term, tmp, precision);
DUPRAT(tmp,a);
divrat( &tmp, term, precision);
DUPNUM(term->pp, count);
DUPNUM(term->pq, num_one);
addrat(&term, rat_one, precision);
mulrat(&term, tmp, precision);
DUPRAT(tmp, a);
divrat(&tmp, term, precision);
DUPRAT(term,rat_one);
divrat( &term, *pn, precision);
subrat( &term, tmp, precision);
DUPRAT(term, rat_one);
divrat(&term, *pn, precision);
subrat(&term, tmp, precision);
divrat (&term, factorial, precision);
addrat( &sum, term, precision);
divrat(&term, factorial, precision);
addrat(&sum, term, precision);
ABSRAT(term);
}
}
// Multiply by factor.
mulrat( &sum, mpy, precision);
mulrat(&sum, mpy, precision);
// And cleanup
precision = oldprec;
@@ -189,70 +186,67 @@ void _gamma( PRAT *pn, uint32_t radix, int32_t precision)
destroyrat(factorial);
destroyrat(*pn);
DUPRAT(*pn,sum);
DUPRAT(*pn, sum);
destroyrat(sum);
}
void factrat( PRAT *px, uint32_t radix, int32_t precision)
void factrat(PRAT* px, uint32_t radix, int32_t precision)
{
PRAT fact = nullptr;
PRAT frac = nullptr;
PRAT neg_rat_one = nullptr;
if ( rat_gt( *px, rat_max_fact, precision) || rat_lt( *px, rat_min_fact, precision) )
{
if (rat_gt(*px, rat_max_fact, precision) || rat_lt(*px, rat_min_fact, precision))
{
// Don't attempt factorial of anything too large or small.
throw CALC_E_OVERFLOW;
}
}
DUPRAT(fact,rat_one);
DUPRAT(fact, rat_one);
DUPRAT(neg_rat_one,rat_one);
DUPRAT(neg_rat_one, rat_one);
neg_rat_one->pp->sign *= -1;
DUPRAT( frac, *px );
fracrat( &frac, radix, precision);
DUPRAT(frac, *px);
fracrat(&frac, radix, precision);
// Check for negative integers and throw an error.
if ( ( zerrat(frac) || ( LOGRATRADIX(frac) <= -precision) ) &&
( (*px)->pp->sign * (*px)->pq->sign == -1 ) )
{
if ((zerrat(frac) || (LOGRATRADIX(frac) <= -precision)) && (SIGN(*px) == -1))
{
throw CALC_E_DOMAIN;
}
while ( rat_gt( *px, rat_zero, precision) &&
( LOGRATRADIX(*px) > -precision) )
{
mulrat( &fact, *px, precision);
subrat( px, rat_one, precision);
}
}
while (rat_gt(*px, rat_zero, precision) && (LOGRATRADIX(*px) > -precision))
{
mulrat(&fact, *px, precision);
subrat(px, rat_one, precision);
}
// Added to make numbers 'close enough' to integers use integer factorial.
if ( LOGRATRADIX(*px) <= -precision)
{
DUPRAT((*px),rat_zero);
if (LOGRATRADIX(*px) <= -precision)
{
DUPRAT((*px), rat_zero);
intrat(&fact, radix, precision);
}
}
while ( rat_lt( *px, neg_rat_one, precision) )
{
addrat( px, rat_one, precision);
divrat( &fact, *px, precision);
}
while (rat_lt(*px, neg_rat_one, precision))
{
addrat(px, rat_one, precision);
divrat(&fact, *px, precision);
}
if ( rat_neq( *px, rat_zero, precision) )
{
addrat( px, rat_one, precision);
_gamma( px, radix, precision);
mulrat( px, fact, precision);
}
if (rat_neq(*px, rat_zero, precision))
{
addrat(px, rat_one, precision);
_gamma(px, radix, precision);
mulrat(px, fact, precision);
}
else
{
DUPRAT(*px,fact);
}
{
DUPRAT(*px, fact);
}
destroyrat(fact);
destroyrat(frac);
destroyrat(neg_rat_one);
}

View File

@@ -1,4 +1,4 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
//-----------------------------------------------------------------------------
@@ -15,29 +15,25 @@
// Special Information
//
//-----------------------------------------------------------------------------
#include "pch.h"
#include "ratpak.h"
void ascalerat( _Inout_ PRAT *pa, ANGLE_TYPE angletype, int32_t precision)
void ascalerat(_Inout_ PRAT* pa, ANGLE_TYPE angletype, int32_t precision)
{
switch ( angletype )
{
switch (angletype)
{
case ANGLE_RAD:
break;
case ANGLE_DEG:
divrat( pa, two_pi, precision);
mulrat( pa, rat_360, precision);
divrat(pa, two_pi, precision);
mulrat(pa, rat_360, precision);
break;
case ANGLE_GRAD:
divrat( pa, two_pi, precision);
mulrat( pa, rat_400, precision);
divrat(pa, two_pi, precision);
mulrat(pa, rat_400, precision);
break;
}
}
}
//-----------------------------------------------------------------------------
//
// FUNCTION: asinrat, _asinrat
@@ -65,88 +61,83 @@ void ascalerat( _Inout_ PRAT *pa, ANGLE_TYPE angletype, int32_t precision)
//
//-----------------------------------------------------------------------------
void _asinrat( PRAT *px, int32_t precision)
void _asinrat(PRAT* px, int32_t precision)
{
CREATETAYLOR();
DUPRAT(pret,*px);
DUPRAT(thisterm,*px);
DUPNUM(n2,num_one);
DUPRAT(pret, *px);
DUPRAT(thisterm, *px);
DUPNUM(n2, num_one);
do
{
NEXTTERM(xx,MULNUM(n2) MULNUM(n2)
INC(n2) DIVNUM(n2) INC(n2) DIVNUM(n2), precision);
}
while ( !SMALL_ENOUGH_RAT( thisterm, precision) );
{
NEXTTERM(xx, MULNUM(n2) MULNUM(n2) INC(n2) DIVNUM(n2) INC(n2) DIVNUM(n2), precision);
} while (!SMALL_ENOUGH_RAT(thisterm, precision));
DESTROYTAYLOR();
}
void asinanglerat( _Inout_ PRAT *pa, ANGLE_TYPE angletype, uint32_t radix, int32_t precision)
void asinanglerat(_Inout_ PRAT* pa, ANGLE_TYPE angletype, uint32_t radix, int32_t precision)
{
asinrat( pa, radix, precision);
ascalerat( pa, angletype, precision);
asinrat(pa, radix, precision);
ascalerat(pa, angletype, precision);
}
void asinrat( PRAT *px, uint32_t radix, int32_t precision)
void asinrat(PRAT* px, uint32_t radix, int32_t precision)
{
int32_t sgn;
PRAT pret= nullptr;
PRAT phack= nullptr;
sgn = (*px)->pp->sign* (*px)->pq->sign;
PRAT pret = nullptr;
PRAT phack = nullptr;
int32_t sgn = SIGN(*px);
(*px)->pp->sign = 1;
(*px)->pq->sign = 1;
// Avoid the really bad part of the asin curve near +/-1.
DUPRAT(phack,*px);
DUPRAT(phack, *px);
subrat(&phack, rat_one, precision);
// Since *px might be epsilon near zero we must set it to zero.
if ( rat_le(phack, rat_smallest, precision) && rat_ge(phack, rat_negsmallest, precision) )
{
if (rat_le(phack, rat_smallest, precision) && rat_ge(phack, rat_negsmallest, precision))
{
destroyrat(phack);
DUPRAT( *px, pi_over_two );
}
DUPRAT(*px, pi_over_two);
}
else
{
{
destroyrat(phack);
if ( rat_gt( *px, pt_eight_five, precision) )
if (rat_gt(*px, pt_eight_five, precision))
{
if (rat_gt(*px, rat_one, precision))
{
if ( rat_gt( *px, rat_one, precision) )
subrat(px, rat_one, precision);
if (rat_gt(*px, rat_smallest, precision))
{
subrat( px, rat_one, precision);
if ( rat_gt( *px, rat_smallest, precision) )
{
throw( CALC_E_DOMAIN );
}
else
{
DUPRAT(*px,rat_one);
}
throw(CALC_E_DOMAIN);
}
DUPRAT(pret,*px);
mulrat( px, pret, precision);
else
{
DUPRAT(*px, rat_one);
}
}
DUPRAT(pret, *px);
mulrat(px, pret, precision);
(*px)->pp->sign *= -1;
addrat( px, rat_one, precision);
rootrat( px, rat_two, radix, precision);
_asinrat( px, precision);
addrat(px, rat_one, precision);
rootrat(px, rat_two, radix, precision);
_asinrat(px, precision);
(*px)->pp->sign *= -1;
addrat( px, pi_over_two, precision);
addrat(px, pi_over_two, precision);
destroyrat(pret);
}
else
{
_asinrat( px, precision);
}
}
else
{
_asinrat(px, precision);
}
}
(*px)->pp->sign = sgn;
(*px)->pq->sign = 1;
}
//-----------------------------------------------------------------------------
//
// FUNCTION: acosrat, _acosrat
@@ -173,62 +164,58 @@ void asinrat( PRAT *px, uint32_t radix, int32_t precision)
//
//-----------------------------------------------------------------------------
void acosanglerat( _Inout_ PRAT *pa, ANGLE_TYPE angletype, uint32_t radix, int32_t precision)
void acosanglerat(_Inout_ PRAT* pa, ANGLE_TYPE angletype, uint32_t radix, int32_t precision)
{
acosrat( pa, radix, precision);
ascalerat( pa, angletype, precision);
acosrat(pa, radix, precision);
ascalerat(pa, angletype, precision);
}
void _acosrat( PRAT *px, int32_t precision)
void _acosrat(PRAT* px, int32_t precision)
{
CREATETAYLOR();
createrat(thisterm);
thisterm->pp=i32tonum( 1L, BASEX );
thisterm->pq=i32tonum( 1L, BASEX );
thisterm->pp = i32tonum(1L, BASEX);
thisterm->pq = i32tonum(1L, BASEX);
DUPNUM(n2,num_one);
DUPNUM(n2, num_one);
do
{
NEXTTERM(xx,MULNUM(n2) MULNUM(n2)
INC(n2) DIVNUM(n2) INC(n2) DIVNUM(n2), precision);
}
while ( !SMALL_ENOUGH_RAT( thisterm, precision) );
{
NEXTTERM(xx, MULNUM(n2) MULNUM(n2) INC(n2) DIVNUM(n2) INC(n2) DIVNUM(n2), precision);
} while (!SMALL_ENOUGH_RAT(thisterm, precision));
DESTROYTAYLOR();
}
void acosrat( PRAT *px, uint32_t radix, int32_t precision)
void acosrat(PRAT* px, uint32_t radix, int32_t precision)
{
int32_t sgn;
sgn = (*px)->pp->sign*(*px)->pq->sign;
int32_t sgn = SIGN(*px);
(*px)->pp->sign = 1;
(*px)->pq->sign = 1;
if ( rat_equ( *px, rat_one, precision) )
if (rat_equ(*px, rat_one, precision))
{
if (sgn == -1)
{
if ( sgn == -1 )
{
DUPRAT(*px,pi);
}
else
{
DUPRAT( *px, rat_zero );
}
DUPRAT(*px, pi);
}
else
else
{
DUPRAT(*px, rat_zero);
}
}
else
{
(*px)->pp->sign = sgn;
asinrat( px, radix, precision);
asinrat(px, radix, precision);
(*px)->pp->sign *= -1;
addrat(px, pi_over_two, precision);
}
}
}
//-----------------------------------------------------------------------------
@@ -262,81 +249,79 @@ void acosrat( PRAT *px, uint32_t radix, int32_t precision)
//
//-----------------------------------------------------------------------------
void atananglerat( _Inout_ PRAT *pa, ANGLE_TYPE angletype, uint32_t radix, int32_t precision)
void atananglerat(_Inout_ PRAT* pa, ANGLE_TYPE angletype, uint32_t radix, int32_t precision)
{
atanrat( pa, radix, precision);
ascalerat( pa, angletype, precision);
atanrat(pa, radix, precision);
ascalerat(pa, angletype, precision);
}
void _atanrat( PRAT *px, int32_t precision)
void _atanrat(PRAT* px, int32_t precision)
{
CREATETAYLOR();
DUPRAT(pret,*px);
DUPRAT(thisterm,*px);
DUPRAT(pret, *px);
DUPRAT(thisterm, *px);
DUPNUM(n2,num_one);
DUPNUM(n2, num_one);
xx->pp->sign *= -1;
do {
NEXTTERM(xx,MULNUM(n2) INC(n2) INC(n2) DIVNUM(n2), precision);
} while ( !SMALL_ENOUGH_RAT( thisterm, precision) );
do
{
NEXTTERM(xx, MULNUM(n2) INC(n2) INC(n2) DIVNUM(n2), precision);
} while (!SMALL_ENOUGH_RAT(thisterm, precision));
DESTROYTAYLOR();
}
void atanrat( PRAT *px, uint32_t radix, int32_t precision)
void atanrat(PRAT* px, uint32_t radix, int32_t precision)
{
int32_t sgn;
PRAT tmpx= nullptr;
sgn = (*px)->pp->sign * (*px)->pq->sign;
PRAT tmpx = nullptr;
int32_t sgn = SIGN(*px);
(*px)->pp->sign = 1;
(*px)->pq->sign = 1;
if ( rat_gt( (*px), pt_eight_five, precision) )
if (rat_gt((*px), pt_eight_five, precision))
{
if (rat_gt((*px), rat_two, precision))
{
if ( rat_gt( (*px), rat_two, precision) )
{
(*px)->pp->sign = sgn;
(*px)->pq->sign = 1;
DUPRAT(tmpx,rat_one);
DUPRAT(tmpx, rat_one);
divrat(&tmpx, (*px), precision);
_atanrat(&tmpx, precision);
tmpx->pp->sign = sgn;
tmpx->pq->sign = 1;
DUPRAT(*px,pi_over_two);
DUPRAT(*px, pi_over_two);
subrat(px, tmpx, precision);
destroyrat( tmpx );
}
destroyrat(tmpx);
}
else
{
{
(*px)->pp->sign = sgn;
DUPRAT(tmpx,*px);
mulrat( &tmpx, *px, precision);
addrat( &tmpx, rat_one, precision);
rootrat( &tmpx, rat_two, radix, precision);
divrat( px, tmpx, precision);
destroyrat( tmpx );
asinrat( px, radix, precision);
DUPRAT(tmpx, *px);
mulrat(&tmpx, *px, precision);
addrat(&tmpx, rat_one, precision);
rootrat(&tmpx, rat_two, radix, precision);
divrat(px, tmpx, precision);
destroyrat(tmpx);
asinrat(px, radix, precision);
(*px)->pp->sign = sgn;
(*px)->pq->sign = 1;
}
}
}
else
{
{
(*px)->pp->sign = sgn;
(*px)->pq->sign = 1;
_atanrat( px, precision);
}
if ( rat_gt( *px, pi_over_two, precision) )
{
subrat( px, pi, precision);
}
_atanrat(px, precision);
}
if (rat_gt(*px, pi_over_two, precision))
{
subrat(px, pi, precision);
}
}

View File

@@ -16,11 +16,8 @@
//
//
//-----------------------------------------------------------------------------
#include "pch.h"
#include "ratpak.h"
//-----------------------------------------------------------------------------
//
// FUNCTION: asinhrat
@@ -50,47 +47,44 @@
//
//-----------------------------------------------------------------------------
void asinhrat( PRAT *px, uint32_t radix, int32_t precision)
void asinhrat(PRAT* px, uint32_t radix, int32_t precision)
{
PRAT neg_pt_eight_five = nullptr;
DUPRAT(neg_pt_eight_five,pt_eight_five);
DUPRAT(neg_pt_eight_five, pt_eight_five);
neg_pt_eight_five->pp->sign *= -1;
if ( rat_gt( *px, pt_eight_five, precision) || rat_lt( *px, neg_pt_eight_five, precision) )
{
if (rat_gt(*px, pt_eight_five, precision) || rat_lt(*px, neg_pt_eight_five, precision))
{
PRAT ptmp = nullptr;
DUPRAT(ptmp,(*px));
DUPRAT(ptmp, (*px));
mulrat(&ptmp, *px, precision);
addrat(&ptmp, rat_one, precision);
rootrat(&ptmp, rat_two, radix, precision);
addrat(px, ptmp, precision);
lograt(px, precision);
destroyrat(ptmp);
}
}
else
{
{
CREATETAYLOR();
xx->pp->sign *= -1;
DUPRAT(pret,(*px));
DUPRAT(thisterm,(*px));
DUPRAT(pret, (*px));
DUPRAT(thisterm, (*px));
DUPNUM(n2,num_one);
DUPNUM(n2, num_one);
do
{
NEXTTERM(xx,MULNUM(n2) MULNUM(n2)
INC(n2) DIVNUM(n2) INC(n2) DIVNUM(n2), precision);
}
while ( !SMALL_ENOUGH_RAT( thisterm, precision) );
{
NEXTTERM(xx, MULNUM(n2) MULNUM(n2) INC(n2) DIVNUM(n2) INC(n2) DIVNUM(n2), precision);
} while (!SMALL_ENOUGH_RAT(thisterm, precision));
DESTROYTAYLOR();
}
}
destroyrat(neg_pt_eight_five);
}
//-----------------------------------------------------------------------------
//
// FUNCTION: acoshrat
@@ -107,24 +101,24 @@ void asinhrat( PRAT *px, uint32_t radix, int32_t precision)
//
//-----------------------------------------------------------------------------
void acoshrat( PRAT *px, uint32_t radix, int32_t precision)
void acoshrat(PRAT* px, uint32_t radix, int32_t precision)
{
if ( rat_lt( *px, rat_one, precision) )
{
if (rat_lt(*px, rat_one, precision))
{
throw CALC_E_DOMAIN;
}
}
else
{
{
PRAT ptmp = nullptr;
DUPRAT(ptmp,(*px));
DUPRAT(ptmp, (*px));
mulrat(&ptmp, *px, precision);
subrat(&ptmp, rat_one, precision);
rootrat(&ptmp,rat_two, radix, precision);
rootrat(&ptmp, rat_two, radix, precision);
addrat(px, ptmp, precision);
lograt(px, precision);
destroyrat(ptmp);
}
}
}
//-----------------------------------------------------------------------------
@@ -144,11 +138,11 @@ void acoshrat( PRAT *px, uint32_t radix, int32_t precision)
//
//-----------------------------------------------------------------------------
void atanhrat( PRAT *px, int32_t precision)
void atanhrat(PRAT* px, int32_t precision)
{
PRAT ptmp = nullptr;
DUPRAT(ptmp,(*px));
DUPRAT(ptmp, (*px));
subrat(&ptmp, rat_one, precision);
addrat(px, rat_one, precision);
divrat(px, ptmp, precision);
@@ -157,4 +151,3 @@ void atanhrat( PRAT *px, int32_t precision)
divrat(px, rat_two, precision);
destroyrat(ptmp);
}

View File

@@ -13,83 +13,82 @@
// Contains routines for and, or, xor, not and other support
//
//---------------------------------------------------------------------------
#include "pch.h"
#include "ratpak.h"
using namespace std;
void lshrat( PRAT *pa, PRAT b, uint32_t radix, int32_t precision)
void lshrat(PRAT* pa, PRAT b, uint32_t radix, int32_t precision)
{
PRAT pwr= nullptr;
PRAT pwr = nullptr;
int32_t intb;
intrat(pa, radix, precision);
if ( !zernum( (*pa)->pp ) )
{
if (!zernum((*pa)->pp))
{
// If input is zero we're done.
if ( rat_gt( b, rat_max_exp, precision) )
{
if (rat_gt(b, rat_max_exp, precision))
{
// Don't attempt lsh of anything big
throw( CALC_E_DOMAIN );
}
throw(CALC_E_DOMAIN);
}
intb = rattoi32(b, radix, precision);
DUPRAT(pwr,rat_two);
DUPRAT(pwr, rat_two);
ratpowi32(&pwr, intb, precision);
mulrat(pa, pwr, precision);
destroyrat(pwr);
}
}
}
void rshrat( PRAT *pa, PRAT b, uint32_t radix, int32_t precision)
void rshrat(PRAT* pa, PRAT b, uint32_t radix, int32_t precision)
{
PRAT pwr= nullptr;
PRAT pwr = nullptr;
int32_t intb;
intrat(pa, radix, precision);
if ( !zernum( (*pa)->pp ) )
{
if (!zernum((*pa)->pp))
{
// If input is zero we're done.
if ( rat_lt( b, rat_min_exp, precision) )
{
if (rat_lt(b, rat_min_exp, precision))
{
// Don't attempt rsh of anything big and negative.
throw( CALC_E_DOMAIN );
}
throw(CALC_E_DOMAIN);
}
intb = rattoi32(b, radix, precision);
DUPRAT(pwr,rat_two);
DUPRAT(pwr, rat_two);
ratpowi32(&pwr, intb, precision);
divrat(pa, pwr, precision);
destroyrat(pwr);
}
}
}
void boolrat( PRAT *pa, PRAT b, int func, uint32_t radix, int32_t precision);
void boolnum( PNUMBER *pa, PNUMBER b, int func );
void boolrat(PRAT* pa, PRAT b, int func, uint32_t radix, int32_t precision);
void boolnum(PNUMBER* pa, PNUMBER b, int func);
enum {
enum
{
FUNC_AND,
FUNC_OR,
FUNC_XOR
} BOOL_FUNCS;
void andrat( PRAT *pa, PRAT b, uint32_t radix, int32_t precision)
void andrat(PRAT* pa, PRAT b, uint32_t radix, int32_t precision)
{
boolrat( pa, b, FUNC_AND, radix, precision);
boolrat(pa, b, FUNC_AND, radix, precision);
}
void orrat( PRAT *pa, PRAT b, uint32_t radix, int32_t precision)
void orrat(PRAT* pa, PRAT b, uint32_t radix, int32_t precision)
{
boolrat( pa, b, FUNC_OR, radix, precision);
boolrat(pa, b, FUNC_OR, radix, precision);
}
void xorrat( PRAT *pa, PRAT b, uint32_t radix, int32_t precision)
void xorrat(PRAT* pa, PRAT b, uint32_t radix, int32_t precision)
{
boolrat( pa, b, FUNC_XOR, radix, precision);
boolrat(pa, b, FUNC_XOR, radix, precision);
}
//---------------------------------------------------------------------------
@@ -104,15 +103,15 @@ void xorrat( PRAT *pa, PRAT b, uint32_t radix, int32_t precision)
//
//---------------------------------------------------------------------------
void boolrat( PRAT *pa, PRAT b, int func, uint32_t radix, int32_t precision)
void boolrat(PRAT* pa, PRAT b, int func, uint32_t radix, int32_t precision)
{
PRAT tmp= nullptr;
intrat( pa, radix, precision);
DUPRAT(tmp,b);
intrat( &tmp, radix, precision);
PRAT tmp = nullptr;
intrat(pa, radix, precision);
DUPRAT(tmp, b);
intrat(&tmp, radix, precision);
boolnum( &((*pa)->pp), tmp->pp, func );
boolnum(&((*pa)->pp), tmp->pp, func);
destroyrat(tmp);
}
@@ -130,39 +129,34 @@ void boolrat( PRAT *pa, PRAT b, int func, uint32_t radix, int32_t precision)
//
//---------------------------------------------------------------------------
void boolnum( PNUMBER *pa, PNUMBER b, int func )
void boolnum(PNUMBER* pa, PNUMBER b, int func)
{
PNUMBER c= nullptr;
PNUMBER a= nullptr;
MANTTYPE *pcha;
MANTTYPE *pchb;
MANTTYPE *pchc;
PNUMBER c = nullptr;
PNUMBER a = nullptr;
MANTTYPE* pcha;
MANTTYPE* pchb;
MANTTYPE* pchc;
int32_t cdigits;
int32_t mexp;
MANTTYPE da;
MANTTYPE db;
a=*pa;
cdigits = max( a->cdigit+a->exp, b->cdigit+b->exp ) -
min( a->exp, b->exp );
createnum( c, cdigits );
c->exp = min( a->exp, b->exp );
a = *pa;
cdigits = max(a->cdigit + a->exp, b->cdigit + b->exp) - min(a->exp, b->exp);
createnum(c, cdigits);
c->exp = min(a->exp, b->exp);
mexp = c->exp;
c->cdigit = cdigits;
pcha = a->mant;
pchb = b->mant;
pchc = c->mant;
for ( ;cdigits > 0; cdigits--, mexp++ )
for (; cdigits > 0; cdigits--, mexp++)
{
da = (((mexp >= a->exp) && (cdigits + a->exp - c->exp > (c->cdigit - a->cdigit))) ? *pcha++ : 0);
db = (((mexp >= b->exp) && (cdigits + b->exp - c->exp > (c->cdigit - b->cdigit))) ? *pchb++ : 0);
switch (func)
{
da = ( ( ( mexp >= a->exp ) && ( cdigits + a->exp - c->exp >
(c->cdigit - a->cdigit) ) ) ?
*pcha++ : 0 );
db = ( ( ( mexp >= b->exp ) && ( cdigits + b->exp - c->exp >
(c->cdigit - b->cdigit) ) ) ?
*pchb++ : 0 );
switch ( func )
{
case FUNC_AND:
*pchc++ = da & db;
break;
@@ -172,15 +166,51 @@ void boolnum( PNUMBER *pa, PNUMBER b, int func )
case FUNC_XOR:
*pchc++ = da ^ db;
break;
}
}
}
c->sign = a->sign;
while ( c->cdigit > 1 && *(--pchc) == 0 )
{
while (c->cdigit > 1 && *(--pchc) == 0)
{
c->cdigit--;
}
destroynum( *pa );
*pa=c;
}
destroynum(*pa);
*pa = c;
}
//-----------------------------------------------------------------------------
//
// FUNCTION: remrat
//
// ARGUMENTS: pointer to a rational a second rational.
//
// RETURN: None, changes pointer.
//
// DESCRIPTION: Calculate the remainder of *pa / b,
// equivalent of 'pa % b' in C/C++ and produces a result
// that is either zero or has the same sign as the dividend.
//
//-----------------------------------------------------------------------------
void remrat(PRAT* pa, PRAT b)
{
if (zerrat(b))
{
throw CALC_E_INDEFINITE;
}
PRAT tmp = nullptr;
DUPRAT(tmp, b);
mulnumx(&((*pa)->pp), tmp->pq);
mulnumx(&(tmp->pp), (*pa)->pq);
remnum(&((*pa)->pp), tmp->pp, BASEX);
mulnumx(&((*pa)->pq), tmp->pq);
// Get *pa back in the integer over integer form.
RENORMALIZE(*pa);
destroyrat(tmp);
}
//-----------------------------------------------------------------------------
@@ -191,28 +221,38 @@ void boolnum( PNUMBER *pa, PNUMBER b, int func )
//
// RETURN: None, changes pointer.
//
// DESCRIPTION: Does the rational equivalent of frac(*pa);
// DESCRIPTION: Calculate the remainder of *pa / b, with the sign of the result
// either zero or has the same sign as the divisor.
// NOTE: When *pa or b are negative, the result won't be the same as
// the C/C++ operator %, use remrat if it's the behavior you expect.
//
//-----------------------------------------------------------------------------
void modrat( PRAT *pa, PRAT b )
void modrat(PRAT* pa, PRAT b)
{
// contrary to remrat(X, 0) returning 0, modrat(X, 0) must return X
if (zerrat(b))
{
return;
}
PRAT tmp = nullptr;
DUPRAT(tmp, b);
if ( zerrat( b ) )
{
throw CALC_E_INDEFINITE;
}
DUPRAT(tmp,b);
auto needAdjust = (SIGN(*pa) == -1 ? (SIGN(b) == 1) : (SIGN(b) == -1));
mulnumx( &((*pa)->pp), tmp->pq );
mulnumx( &(tmp->pp), (*pa)->pq );
remnum( &((*pa)->pp), tmp->pp, BASEX );
mulnumx( &((*pa)->pq), tmp->pq );
mulnumx(&((*pa)->pp), tmp->pq);
mulnumx(&(tmp->pp), (*pa)->pq);
remnum(&((*pa)->pp), tmp->pp, BASEX);
mulnumx(&((*pa)->pq), tmp->pq);
if (needAdjust && !zerrat(*pa))
{
addrat(pa, b, BASEX);
}
// Get *pa back in the integer over integer form.
RENORMALIZE(*pa);
destroyrat( tmp );
destroyrat(tmp);
}

View File

@@ -17,7 +17,8 @@
//
//
//-----------------------------------------------------------------------------
#include "pch.h"
#include <list>
#include <cstring> // for memmove
#include "ratpak.h"
using namespace std;
@@ -40,51 +41,49 @@ using namespace std;
//
//----------------------------------------------------------------------------
void _addnum( PNUMBER *pa, PNUMBER b, uint32_t radix);
void _addnum(PNUMBER* pa, PNUMBER b, uint32_t radix);
void __inline addnum( PNUMBER *pa, PNUMBER b, uint32_t radix)
void addnum(PNUMBER* pa, PNUMBER b, uint32_t radix)
{
if ( b->cdigit > 1 || b->mant[0] != 0 )
{ // If b is zero we are done.
if ( (*pa)->cdigit > 1 || (*pa)->mant[0] != 0 )
{ // pa and b are both nonzero.
_addnum( pa, b, radix);
}
else
{ // if pa is zero and b isn't just copy b.
DUPNUM(*pa,b);
}
if (b->cdigit > 1 || b->mant[0] != 0)
{ // If b is zero we are done.
if ((*pa)->cdigit > 1 || (*pa)->mant[0] != 0)
{ // pa and b are both nonzero.
_addnum(pa, b, radix);
}
else
{ // if pa is zero and b isn't just copy b.
DUPNUM(*pa, b);
}
}
}
void _addnum( PNUMBER *pa, PNUMBER b, uint32_t radix)
void _addnum(PNUMBER* pa, PNUMBER b, uint32_t radix)
{
PNUMBER c= nullptr; // c will contain the result.
PNUMBER a= nullptr; // a is the dereferenced number pointer from *pa
MANTTYPE *pcha; // pcha is a pointer to the mantissa of a.
MANTTYPE *pchb; // pchb is a pointer to the mantissa of b.
MANTTYPE *pchc; // pchc is a pointer to the mantissa of c.
int32_t cdigits; // cdigits is the max count of the digits results
// used as a counter.
int32_t mexp; // mexp is the exponent of the result.
MANTTYPE da; // da is a single 'digit' after possible padding.
MANTTYPE db; // db is a single 'digit' after possible padding.
MANTTYPE cy=0; // cy is the value of a carry after adding two 'digits'
int32_t fcompla = 0; // fcompla is a flag to signal a is negative.
int32_t fcomplb = 0; // fcomplb is a flag to signal b is negative.
a=*pa;
PNUMBER c = nullptr; // c will contain the result.
PNUMBER a = nullptr; // a is the dereferenced number pointer from *pa
MANTTYPE* pcha; // pcha is a pointer to the mantissa of a.
MANTTYPE* pchb; // pchb is a pointer to the mantissa of b.
MANTTYPE* pchc; // pchc is a pointer to the mantissa of c.
int32_t cdigits; // cdigits is the max count of the digits results
// used as a counter.
int32_t mexp; // mexp is the exponent of the result.
MANTTYPE da; // da is a single 'digit' after possible padding.
MANTTYPE db; // db is a single 'digit' after possible padding.
MANTTYPE cy = 0; // cy is the value of a carry after adding two 'digits'
int32_t fcompla = 0; // fcompla is a flag to signal a is negative.
int32_t fcomplb = 0; // fcomplb is a flag to signal b is negative.
a = *pa;
// Calculate the overlap of the numbers after alignment, this includes
// necessary padding 0's
cdigits = max( a->cdigit+a->exp, b->cdigit+b->exp ) -
min( a->exp, b->exp );
cdigits = max(a->cdigit + a->exp, b->cdigit + b->exp) - min(a->exp, b->exp);
createnum( c, cdigits + 1 );
c->exp = min( a->exp, b->exp );
createnum(c, cdigits + 1);
c->exp = min(a->exp, b->exp);
mexp = c->exp;
c->cdigit = cdigits;
pcha = a->mant;
@@ -92,89 +91,82 @@ void _addnum( PNUMBER *pa, PNUMBER b, uint32_t radix)
pchc = c->mant;
// Figure out the sign of the numbers
if ( a->sign != b->sign )
{
if (a->sign != b->sign)
{
cy = 1;
fcompla = ( a->sign == -1 );
fcomplb = ( b->sign == -1 );
}
fcompla = (a->sign == -1);
fcomplb = (b->sign == -1);
}
// Loop over all the digits, real and 0 padded. Here we know a and b are
// aligned
for ( ;cdigits > 0; cdigits--, mexp++ )
{
for (; cdigits > 0; cdigits--, mexp++)
{
// Get digit from a, taking padding into account.
da = ( ( ( mexp >= a->exp ) && ( cdigits + a->exp - c->exp >
(c->cdigit - a->cdigit) ) ) ?
*pcha++ : 0 );
da = (((mexp >= a->exp) && (cdigits + a->exp - c->exp > (c->cdigit - a->cdigit))) ? *pcha++ : 0);
// Get digit from b, taking padding into account.
db = ( ( ( mexp >= b->exp ) && ( cdigits + b->exp - c->exp >
(c->cdigit - b->cdigit) ) ) ?
*pchb++ : 0 );
db = (((mexp >= b->exp) && (cdigits + b->exp - c->exp > (c->cdigit - b->cdigit))) ? *pchb++ : 0);
// Handle complementing for a and b digit. Might be a better way, but
// haven't found it yet.
if ( fcompla )
{
da = (MANTTYPE)(radix) - 1 - da;
}
if ( fcomplb )
{
db = (MANTTYPE)(radix) - 1 - db;
}
if (fcompla)
{
da = (MANTTYPE)(radix)-1 - da;
}
if (fcomplb)
{
db = (MANTTYPE)(radix)-1 - db;
}
// Update carry as necessary
cy = da + db + cy;
*pchc++ = (MANTTYPE)(cy % (MANTTYPE)radix);
cy /= (MANTTYPE)radix;
}
}
// Handle carry from last sum as extra digit
if ( cy && !(fcompla || fcomplb) )
{
if (cy && !(fcompla || fcomplb))
{
*pchc++ = cy;
c->cdigit++;
}
}
// Compute sign of result
if ( !(fcompla || fcomplb) )
{
if (!(fcompla || fcomplb))
{
c->sign = a->sign;
}
}
else
{
if (cy)
{
if ( cy )
{
c->sign = 1;
}
}
else
{
{
// In this particular case an overflow or underflow has occurred
// and all the digits need to be complemented, at one time an
// attempt to handle this above was made, it turned out to be much
// slower on average.
c->sign = -1;
cy = 1;
for ( ( cdigits = c->cdigit ), (pchc = c->mant);
cdigits > 0;
cdigits-- )
{
for ((cdigits = c->cdigit), (pchc = c->mant); cdigits > 0; cdigits--)
{
cy = (MANTTYPE)radix - (MANTTYPE)1 - *pchc + cy;
*pchc++ = (MANTTYPE)( cy % (MANTTYPE)radix);
*pchc++ = (MANTTYPE)(cy % (MANTTYPE)radix);
cy /= (MANTTYPE)radix;
}
}
}
}
// Remove leading zeros, remember digits are in order of
// increasing significance. i.e. 100 would be 0,0,1
while ( c->cdigit > 1 && *(--pchc) == 0 )
{
while (c->cdigit > 1 && *(--pchc) == 0)
{
c->cdigit--;
}
destroynum( *pa );
*pa=c;
}
destroynum(*pa);
*pa = c;
}
//----------------------------------------------------------------------------
@@ -192,52 +184,52 @@ void _addnum( PNUMBER *pa, PNUMBER b, uint32_t radix)
//
//----------------------------------------------------------------------------
void _mulnum( PNUMBER *pa, PNUMBER b, uint32_t radix);
void _mulnum(PNUMBER* pa, PNUMBER b, uint32_t radix);
void __inline mulnum( PNUMBER *pa, PNUMBER b, uint32_t radix)
void mulnum(PNUMBER* pa, PNUMBER b, uint32_t radix)
{
if ( b->cdigit > 1 || b->mant[0] != 1 || b->exp != 0 )
{ // If b is one we don't multiply exactly.
if ( (*pa)->cdigit > 1 || (*pa)->mant[0] != 1 || (*pa)->exp != 0 )
{ // pa and b are both non-one.
_mulnum( pa, b, radix);
}
if (b->cdigit > 1 || b->mant[0] != 1 || b->exp != 0)
{ // If b is one we don't multiply exactly.
if ((*pa)->cdigit > 1 || (*pa)->mant[0] != 1 || (*pa)->exp != 0)
{ // pa and b are both non-one.
_mulnum(pa, b, radix);
}
else
{ // if pa is one and b isn't just copy b, and adjust the sign.
{ // if pa is one and b isn't just copy b, and adjust the sign.
int32_t sign = (*pa)->sign;
DUPNUM(*pa,b);
DUPNUM(*pa, b);
(*pa)->sign *= sign;
}
}
}
else
{ // But we do have to set the sign.
{ // But we do have to set the sign.
(*pa)->sign *= b->sign;
}
}
}
void _mulnum( PNUMBER *pa, PNUMBER b, uint32_t radix)
void _mulnum(PNUMBER* pa, PNUMBER b, uint32_t radix)
{
PNUMBER c= nullptr; // c will contain the result.
PNUMBER a= nullptr; // a is the dereferenced number pointer from *pa
MANTTYPE *pcha; // pcha is a pointer to the mantissa of a.
MANTTYPE *pchb; // pchb is a pointer to the mantissa of b.
MANTTYPE *pchc; // pchc is a pointer to the mantissa of c.
MANTTYPE *pchcoffset; // pchcoffset, is the anchor location of the next
// single digit multiply partial result.
int32_t iadigit = 0; // Index of digit being used in the first number.
int32_t ibdigit = 0; // Index of digit being used in the second number.
MANTTYPE da = 0; // da is the digit from the fist number.
TWO_MANTTYPE cy = 0; // cy is the carry resulting from the addition of
// a multiplied row into the result.
TWO_MANTTYPE mcy = 0; // mcy is the resultant from a single
// multiply, AND the carry of that multiply.
int32_t icdigit = 0; // Index of digit being calculated in final result.
PNUMBER c = nullptr; // c will contain the result.
PNUMBER a = nullptr; // a is the dereferenced number pointer from *pa
MANTTYPE* pcha; // pcha is a pointer to the mantissa of a.
MANTTYPE* pchb; // pchb is a pointer to the mantissa of b.
MANTTYPE* pchc; // pchc is a pointer to the mantissa of c.
MANTTYPE* pchcoffset; // pchcoffset, is the anchor location of the next
// single digit multiply partial result.
int32_t iadigit = 0; // Index of digit being used in the first number.
int32_t ibdigit = 0; // Index of digit being used in the second number.
MANTTYPE da = 0; // da is the digit from the fist number.
TWO_MANTTYPE cy = 0; // cy is the carry resulting from the addition of
// a multiplied row into the result.
TWO_MANTTYPE mcy = 0; // mcy is the resultant from a single
// multiply, AND the carry of that multiply.
int32_t icdigit = 0; // Index of digit being calculated in final result.
a=*pa;
a = *pa;
ibdigit = a->cdigit + b->cdigit - 1;
createnum( c, ibdigit + 1 );
createnum(c, ibdigit + 1);
c->cdigit = ibdigit;
c->sign = a->sign * b->sign;
@@ -245,58 +237,56 @@ void _mulnum( PNUMBER *pa, PNUMBER b, uint32_t radix)
pcha = a->mant;
pchcoffset = c->mant;
for ( iadigit = a->cdigit; iadigit > 0; iadigit-- )
{
da = *pcha++;
for (iadigit = a->cdigit; iadigit > 0; iadigit--)
{
da = *pcha++;
pchb = b->mant;
// Shift pchc, and pchcoffset, one for each digit
pchc = pchcoffset++;
for ( ibdigit = b->cdigit; ibdigit > 0; ibdigit-- )
{
for (ibdigit = b->cdigit; ibdigit > 0; ibdigit--)
{
cy = 0;
mcy = (TWO_MANTTYPE)da * *pchb;
if ( mcy )
{
if (mcy)
{
icdigit = 0;
if ( ibdigit == 1 && iadigit == 1 )
{
c->cdigit++;
}
}
// If result is nonzero, or while result of carry is nonzero...
while ( mcy || cy )
if (ibdigit == 1 && iadigit == 1)
{
c->cdigit++;
}
}
// If result is nonzero, or while result of carry is nonzero...
while (mcy || cy)
{
// update carry from addition(s) and multiply.
cy += (TWO_MANTTYPE)pchc[icdigit]+(mcy%(TWO_MANTTYPE)radix);
cy += (TWO_MANTTYPE)pchc[icdigit] + (mcy % (TWO_MANTTYPE)radix);
// update result digit from
pchc[icdigit++]=(MANTTYPE)(cy%(TWO_MANTTYPE)radix);
pchc[icdigit++] = (MANTTYPE)(cy % (TWO_MANTTYPE)radix);
// update carries from
mcy /= (TWO_MANTTYPE)radix;
cy /= (TWO_MANTTYPE)radix;
}
}
pchb++;
pchc++;
}
}
}
// prevent different kinds of zeros, by stripping leading duplicate zeros.
// digits are in order of increasing significance.
while ( c->cdigit > 1 && c->mant[c->cdigit-1] == 0 )
{
while (c->cdigit > 1 && c->mant[c->cdigit - 1] == 0)
{
c->cdigit--;
}
}
destroynum( *pa );
*pa=c;
destroynum(*pa);
*pa = c;
}
//----------------------------------------------------------------------------
//
// FUNCTION: remnum
@@ -312,55 +302,53 @@ void _mulnum( PNUMBER *pa, PNUMBER b, uint32_t radix)
//
//----------------------------------------------------------------------------
void remnum( PNUMBER *pa, PNUMBER b, uint32_t radix)
void remnum(PNUMBER* pa, PNUMBER b, uint32_t radix)
{
PNUMBER tmp = nullptr; // tmp is the working remainder.
PNUMBER lasttmp = nullptr; // lasttmp is the last remainder which worked.
// Once *pa is less than b, *pa is the remainder.
while ( !lessnum( *pa, b ) )
while (!lessnum(*pa, b))
{
DUPNUM(tmp, b);
if (lessnum(tmp, *pa))
{
DUPNUM( tmp, b );
if ( lessnum( tmp, *pa ) )
{
// Start off close to the right answer for subtraction.
tmp->exp = (*pa)->cdigit+(*pa)->exp - tmp->cdigit;
if ( MSD(*pa) <= MSD(tmp) )
{
tmp->exp = (*pa)->cdigit + (*pa)->exp - tmp->cdigit;
if (MSD(*pa) <= MSD(tmp))
{
// Don't take the chance that the numbers are equal.
tmp->exp--;
}
}
}
destroynum( lasttmp );
lasttmp=i32tonum( 0, radix);
destroynum(lasttmp);
lasttmp = i32tonum(0, radix);
while ( lessnum( tmp, *pa ) )
{
DUPNUM( lasttmp, tmp );
addnum( &tmp, tmp, radix);
}
while (lessnum(tmp, *pa))
{
DUPNUM(lasttmp, tmp);
addnum(&tmp, tmp, radix);
}
if ( lessnum( *pa, tmp ) )
{
if (lessnum(*pa, tmp))
{
// too far, back up...
destroynum( tmp );
tmp=lasttmp;
lasttmp= nullptr;
}
destroynum(tmp);
tmp = lasttmp;
lasttmp = nullptr;
}
// Subtract the working remainder from the remainder holder.
tmp->sign = -1*(*pa)->sign;
addnum( pa, tmp, radix);
tmp->sign = -1 * (*pa)->sign;
addnum(pa, tmp, radix);
destroynum( tmp );
destroynum( lasttmp );
}
destroynum(tmp);
destroynum(lasttmp);
}
}
//---------------------------------------------------------------------------
//
// FUNCTION: divnum
@@ -375,23 +363,23 @@ void remnum( PNUMBER *pa, PNUMBER b, uint32_t radix)
//
//---------------------------------------------------------------------------
void _divnum( PNUMBER *pa, PNUMBER b, uint32_t radix, int32_t precision);
void _divnum(PNUMBER* pa, PNUMBER b, uint32_t radix, int32_t precision);
void __inline divnum( PNUMBER *pa, PNUMBER b, uint32_t radix, int32_t precision)
void divnum(PNUMBER* pa, PNUMBER b, uint32_t radix, int32_t precision)
{
if ( b->cdigit > 1 || b->mant[0] != 1 || b->exp != 0 )
{
if (b->cdigit > 1 || b->mant[0] != 1 || b->exp != 0)
{
// b is not one
_divnum( pa, b, radix, precision);
}
_divnum(pa, b, radix, precision);
}
else
{ // But we do have to set the sign.
{ // But we do have to set the sign.
(*pa)->sign *= b->sign;
}
}
}
void _divnum( PNUMBER *pa, PNUMBER b, uint32_t radix, int32_t precision)
void _divnum(PNUMBER* pa, PNUMBER b, uint32_t radix, int32_t precision)
{
PNUMBER a = *pa;
int32_t thismax = precision + 2;
@@ -410,7 +398,7 @@ void _divnum( PNUMBER *pa, PNUMBER b, uint32_t radix, int32_t precision)
c->exp = (a->cdigit + a->exp) - (b->cdigit + b->exp) + 1;
c->sign = a->sign * b->sign;
MANTTYPE *ptrc = c->mant + thismax;
MANTTYPE* ptrc = c->mant + thismax;
PNUMBER rem = nullptr;
PNUMBER tmp = nullptr;
DUPNUM(rem, a);
@@ -488,7 +476,6 @@ void _divnum( PNUMBER *pa, PNUMBER b, uint32_t radix, int32_t precision)
*pa = c;
}
//---------------------------------------------------------------------------
//
// FUNCTION: equnum
@@ -502,58 +489,56 @@ void _divnum( PNUMBER *pa, PNUMBER b, uint32_t radix, int32_t precision)
//
//---------------------------------------------------------------------------
bool equnum( PNUMBER a, PNUMBER b )
bool equnum(PNUMBER a, PNUMBER b)
{
int32_t diff;
MANTTYPE *pa;
MANTTYPE *pb;
MANTTYPE* pa;
MANTTYPE* pb;
int32_t cdigits;
int32_t ccdigits;
MANTTYPE da;
MANTTYPE db;
MANTTYPE da;
MANTTYPE db;
diff = ( a->cdigit + a->exp ) - ( b->cdigit + b->exp );
if ( diff < 0 )
{
diff = (a->cdigit + a->exp) - (b->cdigit + b->exp);
if (diff < 0)
{
// If the exponents are different, these are different numbers.
return false;
}
}
else
{
if (diff > 0)
{
if ( diff > 0 )
{
// If the exponents are different, these are different numbers.
return false;
}
}
else
{
{
// OK the exponents match.
pa = a->mant;
pb = b->mant;
pa += a->cdigit - 1;
pb += b->cdigit - 1;
cdigits = max( a->cdigit, b->cdigit );
cdigits = max(a->cdigit, b->cdigit);
ccdigits = cdigits;
// Loop over all digits until we run out of digits or there is a
// difference in the digits.
for ( ;cdigits > 0; cdigits-- )
for (; cdigits > 0; cdigits--)
{
da = ((cdigits > (ccdigits - a->cdigit)) ? *pa-- : 0);
db = ((cdigits > (ccdigits - b->cdigit)) ? *pb-- : 0);
if (da != db)
{
da = ( (cdigits > (ccdigits - a->cdigit) ) ?
*pa-- : 0 );
db = ( (cdigits > (ccdigits - b->cdigit) ) ?
*pb-- : 0 );
if ( da != db )
{
return false;
}
}
}
// In this case, they are equal.
return true;
}
}
}
}
//---------------------------------------------------------------------------
@@ -570,54 +555,51 @@ bool equnum( PNUMBER a, PNUMBER b )
//
//---------------------------------------------------------------------------
bool lessnum( PNUMBER a, PNUMBER b )
bool lessnum(PNUMBER a, PNUMBER b)
{
int32_t diff;
MANTTYPE *pa;
MANTTYPE *pb;
MANTTYPE* pa;
MANTTYPE* pb;
int32_t cdigits;
int32_t ccdigits;
MANTTYPE da;
MANTTYPE db;
MANTTYPE da;
MANTTYPE db;
diff = ( a->cdigit + a->exp ) - ( b->cdigit + b->exp );
if ( diff < 0 )
{
diff = (a->cdigit + a->exp) - (b->cdigit + b->exp);
if (diff < 0)
{
// The exponent of a is less than b
return true;
}
}
else
{
if (diff > 0)
{
if ( diff > 0 )
{
return false;
}
}
else
{
{
pa = a->mant;
pb = b->mant;
pa += a->cdigit - 1;
pb += b->cdigit - 1;
cdigits = max( a->cdigit, b->cdigit );
cdigits = max(a->cdigit, b->cdigit);
ccdigits = cdigits;
for ( ;cdigits > 0; cdigits-- )
for (; cdigits > 0; cdigits--)
{
da = ((cdigits > (ccdigits - a->cdigit)) ? *pa-- : 0);
db = ((cdigits > (ccdigits - b->cdigit)) ? *pb-- : 0);
diff = da - db;
if (diff)
{
da = ( (cdigits > (ccdigits - a->cdigit) ) ?
*pa-- : 0 );
db = ( (cdigits > (ccdigits - b->cdigit) ) ?
*pb-- : 0 );
diff = da-db;
if ( diff )
{
return( diff < 0 );
}
return (diff < 0);
}
}
// In this case, they are equal.
return false;
}
}
}
}
//----------------------------------------------------------------------------
@@ -632,24 +614,24 @@ bool lessnum( PNUMBER a, PNUMBER b )
//
//----------------------------------------------------------------------------
bool zernum( PNUMBER a )
bool zernum(PNUMBER a)
{
int32_t length;
MANTTYPE *pcha;
MANTTYPE* pcha;
length = a->cdigit;
pcha = a->mant;
// loop over all the digits until you find a nonzero or until you run
// out of digits
while ( length-- > 0 )
while (length-- > 0)
{
if (*pcha++)
{
if ( *pcha++ )
{
// One of the digits isn't zero, therefore the number isn't zero
return false;
}
}
}
// All of the digits are zero, therefore the number is zero
return true;
}

View File

@@ -16,7 +16,6 @@
//
//-----------------------------------------------------------------------------
#include "pch.h"
#include "ratpak.h"
using namespace std;
@@ -38,23 +37,23 @@ using namespace std;
//
//-----------------------------------------------------------------------------
void gcdrat( PRAT *pa, int32_t precision)
void gcdrat(PRAT* pa, int32_t precision)
{
PNUMBER pgcd= nullptr;
PRAT a= nullptr;
PNUMBER pgcd = nullptr;
PRAT a = nullptr;
a=*pa;
pgcd = gcd( a->pp, a->pq );
a = *pa;
pgcd = gcd(a->pp, a->pq);
if ( !zernum( pgcd ) )
{
divnumx( &(a->pp), pgcd, precision);
divnumx( &(a->pq), pgcd, precision);
}
if (!zernum(pgcd))
{
divnumx(&(a->pp), pgcd, precision);
divnumx(&(a->pq), pgcd, precision);
}
destroynum( pgcd );
*pa=a;
destroynum(pgcd);
*pa = a;
RENORMALIZE(*pa);
}
@@ -71,16 +70,16 @@ void gcdrat( PRAT *pa, int32_t precision)
//
//-----------------------------------------------------------------------------
void fracrat( PRAT *pa , uint32_t radix, int32_t precision)
void fracrat(PRAT* pa, uint32_t radix, int32_t precision)
{
// Only do the flatrat operation if number is nonzero.
// and only if the bottom part is not one.
if ( !zernum( (*pa)->pp ) && !equnum( (*pa)->pq, num_one ) )
if (!zernum((*pa)->pp) && !equnum((*pa)->pq, num_one))
{
flatrat(*pa, radix, precision);
}
remnum( &((*pa)->pp), (*pa)->pq, BASEX );
remnum(&((*pa)->pp), (*pa)->pq, BASEX);
// Get *pa back in the integer over integer form.
RENORMALIZE(*pa);
@@ -99,26 +98,25 @@ void fracrat( PRAT *pa , uint32_t radix, int32_t precision)
//
//-----------------------------------------------------------------------------
void mulrat( PRAT *pa, PRAT b, int32_t precision)
void mulrat(PRAT* pa, PRAT b, int32_t precision)
{
{
// Only do the multiply if it isn't zero.
if ( !zernum( (*pa)->pp ) )
{
mulnumx( &((*pa)->pp), b->pp );
mulnumx( &((*pa)->pq), b->pq );
if (!zernum((*pa)->pp))
{
mulnumx(&((*pa)->pp), b->pp);
mulnumx(&((*pa)->pq), b->pq);
trimit(pa, precision);
}
}
else
{
{
// If it is zero, blast a one in the denominator.
DUPNUM( ((*pa)->pq), num_one );
}
DUPNUM(((*pa)->pq), num_one);
}
#ifdef MULGCD
gcdrat( pa );
gcdrat(pa);
#endif
}
//-----------------------------------------------------------------------------
@@ -134,44 +132,41 @@ void mulrat( PRAT *pa, PRAT b, int32_t precision)
//
//-----------------------------------------------------------------------------
void divrat( PRAT *pa, PRAT b, int32_t precision)
void divrat(PRAT* pa, PRAT b, int32_t precision)
{
if ( !zernum( (*pa)->pp ) )
{
if (!zernum((*pa)->pp))
{
// Only do the divide if the top isn't zero.
mulnumx( &((*pa)->pp), b->pq );
mulnumx( &((*pa)->pq), b->pp );
mulnumx(&((*pa)->pp), b->pq);
mulnumx(&((*pa)->pq), b->pp);
if ( zernum( (*pa)->pq ) )
{
// raise an exception if the bottom is 0.
throw( CALC_E_DIVIDEBYZERO );
}
trimit(pa, precision);
}
else
if (zernum((*pa)->pq))
{
// raise an exception if the bottom is 0.
throw(CALC_E_DIVIDEBYZERO);
}
trimit(pa, precision);
}
else
{
// Top is zero.
if ( zerrat( b ) )
{
if (zerrat(b))
{
// If bottom is zero
// 0 / 0 is indefinite, raise an exception.
throw( CALC_E_INDEFINITE );
}
else
{
// 0/x make a unique 0.
DUPNUM( ((*pa)->pq), num_one );
}
throw(CALC_E_INDEFINITE);
}
else
{
// 0/x make a unique 0.
DUPNUM(((*pa)->pq), num_one);
}
}
#ifdef DIVGCD
gcdrat( pa );
gcdrat(pa);
#endif
}
//-----------------------------------------------------------------------------
@@ -187,11 +182,11 @@ void divrat( PRAT *pa, PRAT b, int32_t precision)
//
//-----------------------------------------------------------------------------
void subrat( PRAT *pa, PRAT b, int32_t precision)
void subrat(PRAT* pa, PRAT b, int32_t precision)
{
b->pp->sign *= -1;
addrat( pa, b, precision);
addrat(pa, b, precision);
b->pp->sign *= -1;
}
@@ -208,13 +203,13 @@ void subrat( PRAT *pa, PRAT b, int32_t precision)
//
//-----------------------------------------------------------------------------
void addrat( PRAT *pa, PRAT b, int32_t precision)
void addrat(PRAT* pa, PRAT b, int32_t precision)
{
PNUMBER bot= nullptr;
PNUMBER bot = nullptr;
if ( equnum( (*pa)->pq, b->pq ) )
{
if (equnum((*pa)->pq, b->pq))
{
// Very special case, q's match.,
// make sure signs are involved in the calculation
// we have to do this since the optimization here is only
@@ -223,33 +218,30 @@ void addrat( PRAT *pa, PRAT b, int32_t precision)
(*pa)->pq->sign = 1;
b->pp->sign *= b->pq->sign;
b->pq->sign = 1;
addnum( &((*pa)->pp), b->pp, BASEX );
}
addnum(&((*pa)->pp), b->pp, BASEX);
}
else
{
{
// Usual case q's aren't the same.
DUPNUM( bot, (*pa)->pq );
mulnumx( &bot, b->pq );
mulnumx( &((*pa)->pp), b->pq );
mulnumx( &((*pa)->pq), b->pp );
addnum( &((*pa)->pp), (*pa)->pq, BASEX );
destroynum( (*pa)->pq );
DUPNUM(bot, (*pa)->pq);
mulnumx(&bot, b->pq);
mulnumx(&((*pa)->pp), b->pq);
mulnumx(&((*pa)->pq), b->pp);
addnum(&((*pa)->pp), (*pa)->pq, BASEX);
destroynum((*pa)->pq);
(*pa)->pq = bot;
trimit(pa, precision);
// Get rid of negative zeros here.
(*pa)->pp->sign *= (*pa)->pq->sign;
(*pa)->pq->sign = 1;
}
}
#ifdef ADDGCD
gcdrat( pa );
gcdrat(pa);
#endif
}
//-----------------------------------------------------------------------------
//
// FUNCTION: rootrat
@@ -263,11 +255,11 @@ void addrat( PRAT *pa, PRAT b, int32_t precision)
//
//-----------------------------------------------------------------------------
void rootrat( PRAT *py, PRAT n, uint32_t radix, int32_t precision)
void rootrat(PRAT* py, PRAT n, uint32_t radix, int32_t precision)
{
// Initialize 1/n
PRAT oneovern= nullptr;
DUPRAT(oneovern,rat_one);
PRAT oneovern = nullptr;
DUPRAT(oneovern, rat_one);
divrat(&oneovern, n, precision);
powrat(py, oneovern, radix, precision);
@@ -275,7 +267,6 @@ void rootrat( PRAT *py, PRAT n, uint32_t radix, int32_t precision)
destroyrat(oneovern);
}
//-----------------------------------------------------------------------------
//
// FUNCTION: zerrat
@@ -289,10 +280,8 @@ void rootrat( PRAT *py, PRAT n, uint32_t radix, int32_t precision)
//
//-----------------------------------------------------------------------------
bool zerrat( PRAT a )
bool zerrat(PRAT a)
{
return( zernum(a->pp) );
return (zernum(a->pp));
}

File diff suppressed because it is too large Load Diff

View File

@@ -17,27 +17,33 @@
//
//-----------------------------------------------------------------------------
#include <algorithm>
#include <string>
#include "CalcErr.h"
#include <cstring> // for memmove
#include "sal_cross_platform.h" // for SAL
static constexpr uint32_t BASEXPWR = 31L;// Internal log2(BASEX)
static constexpr uint32_t BASEXPWR = 31L; // Internal log2(BASEX)
static constexpr uint32_t BASEX = 0x80000000; // Internal radix used in calculations, hope to raise
// this to 2^32 after solving scaling problems with
// overflow detection esp. in mul
// this to 2^32 after solving scaling problems with
// overflow detection esp. in mul
typedef uint32_t MANTTYPE;
typedef uint64_t TWO_MANTTYPE;
enum eNUMOBJ_FMT {
FMT_FLOAT, // returns floating point, or exponential if number is too big
FMT_SCIENTIFIC, // always returns scientific notation
FMT_ENGINEERING // always returns engineering notation such that exponent is a multiple of 3
enum eNUMOBJ_FMT
{
FMT_FLOAT, // returns floating point, or exponential if number is too big
FMT_SCIENTIFIC, // always returns scientific notation
FMT_ENGINEERING // always returns engineering notation such that exponent is a multiple of 3
};
enum eANGLE_TYPE {
ANGLE_DEG, // Calculate trig using 360 degrees per revolution
ANGLE_RAD, // Calculate trig using 2 pi radians per revolution
ANGLE_GRAD // Calculate trig using 400 gradients per revolution
enum eANGLE_TYPE
{
ANGLE_DEG, // Calculate trig using 360 degrees per revolution
ANGLE_RAD, // Calculate trig using 2 pi radians per revolution
ANGLE_GRAD // Calculate trig using 400 gradients per revolution
};
@@ -51,21 +57,20 @@ typedef enum eANGLE_TYPE ANGLE_TYPE;
//-----------------------------------------------------------------------------
#pragma warning(push)
#pragma warning(disable:4200) // nonstandard extension used : zero-sized array in struct/union
#pragma warning(disable : 4200) // nonstandard extension used : zero-sized array in struct/union
typedef struct _number
{
int32_t sign; // The sign of the mantissa, +1, or -1
int32_t cdigit; // The number of digits, or what passes for digits in the
int32_t sign; // The sign of the mantissa, +1, or -1
int32_t cdigit; // The number of digits, or what passes for digits in the
// radix being used.
int32_t exp; // The offset of digits from the radix point
int32_t exp; // The offset of digits from the radix point
// (decimal point in radix 10)
MANTTYPE mant[];
// This is actually allocated as a continuation of the
// NUMBER structure.
// This is actually allocated as a continuation of the
// NUMBER structure.
} NUMBER, *PNUMBER, **PPNUMBER;
#pragma warning(pop)
//-----------------------------------------------------------------------------
//
// RAT type is a representation radix on 2 NUMBER types.
@@ -74,10 +79,10 @@ typedef struct _number
//-----------------------------------------------------------------------------
typedef struct _rat
{
{
PNUMBER pp;
PNUMBER pq;
} RAT, *PRAT;
} RAT, *PRAT;
static constexpr uint32_t MAX_LONG_SIZE = 33; // Base 2 requires 32 'digits'
@@ -131,24 +136,34 @@ extern PRAT rat_max_i32;
extern PRAT rat_min_i32;
// DUPNUM Duplicates a number taking care of allocation and internals
#define DUPNUM(a,b) destroynum(a);createnum( a, (b)->cdigit );_dupnum(a, b);
#define DUPNUM(a, b) \
destroynum(a); \
createnum(a, (b)->cdigit); \
_dupnum(a, b);
// DUPRAT Duplicates a rational taking care of allocation and internals
#define DUPRAT(a,b) destroyrat(a);createrat(a);DUPNUM((a)->pp,(b)->pp);DUPNUM((a)->pq,(b)->pq);
#define DUPRAT(a, b) \
destroyrat(a); \
createrat(a); \
DUPNUM((a)->pp, (b)->pp); \
DUPNUM((a)->pq, (b)->pq);
// LOG*RADIX calculates the integral portion of the log of a number in
// the base currently being used, only accurate to within g_ratio
#define LOGNUMRADIX(pnum) (((pnum)->cdigit+(pnum)->exp)*g_ratio)
#define LOGRATRADIX(prat) (LOGNUMRADIX((prat)->pp)-LOGNUMRADIX((prat)->pq))
#define LOGNUMRADIX(pnum) (((pnum)->cdigit + (pnum)->exp) * g_ratio)
#define LOGRATRADIX(prat) (LOGNUMRADIX((prat)->pp) - LOGNUMRADIX((prat)->pq))
// LOG*2 calculates the integral portion of the log of a number in
// the internal base being used, only accurate to within g_ratio
#define LOGNUM2(pnum) ((pnum)->cdigit+(pnum)->exp)
#define LOGRAT2(prat) (LOGNUM2((prat)->pp)-LOGNUM2((prat)->pq))
#define LOGNUM2(pnum) ((pnum)->cdigit + (pnum)->exp)
#define LOGRAT2(prat) (LOGNUM2((prat)->pp) - LOGNUM2((prat)->pq))
#if defined( DEBUG_RATPAK )
// SIGN returns the sign of the rational
#define SIGN(prat) ((prat)->pp->sign * (prat)->pq->sign)
#if defined(DEBUG_RATPAK)
//-----------------------------------------------------------------------------
//
// Debug versions of rational number creation and destruction routines.
@@ -156,37 +171,39 @@ extern PRAT rat_min_i32;
//
//-----------------------------------------------------------------------------
#define createrat(y) (y)=_createrat(); \
{ \
std::wstringstream outputString; \
outputString << "createrat " << y << " " << # y << " file= " << __FILE__ << ", line= " << __LINE__ << "\n"; \
OutputDebugString(outputString.str().c_str()); \
}
#define destroyrat(x) \
{ \
std::wstringstream outputString; \
outputString << "destroyrat " << x << " file= " << __FILE__ << ", line= " << __LINE__ << "\n"; \
OutputDebugString(outputString.str().c_str()); \
} \
_destroyrat(x),(x)=nullptr
#define createnum(y,x) (y)=_createnum(x); \
{ \
std::wstringstream outputString; \
outputString << "createnum " << y << " " << # y << " file= " << __FILE__ << ", line= " << __LINE__ << "\n"; \
OutputDebugString(outputString.str().c_str()); \
}
#define destroynum(x) \
{ \
std::wstringstream outputString; \
outputString << "destroynum " << x << " file= " << __FILE__ << ", line= " << __LINE__ << "\n"; \
OutputDebugString(outputString.str().c_str()); \
} \
_destroynum(x),(x)=nullptr
#define createrat(y) \
(y) = _createrat(); \
{ \
std::wstringstream outputString; \
outputString << "createrat " << y << " " << #y << " file= " << __FILE__ << ", line= " << __LINE__ << "\n"; \
OutputDebugString(outputString.str().c_str()); \
}
#define destroyrat(x) \
{ \
std::wstringstream outputString; \
outputString << "destroyrat " << x << " file= " << __FILE__ << ", line= " << __LINE__ << "\n"; \
OutputDebugString(outputString.str().c_str()); \
} \
_destroyrat(x), (x) = nullptr
#define createnum(y, x) \
(y) = _createnum(x); \
{ \
std::wstringstream outputString; \
outputString << "createnum " << y << " " << #y << " file= " << __FILE__ << ", line= " << __LINE__ << "\n"; \
OutputDebugString(outputString.str().c_str()); \
}
#define destroynum(x) \
{ \
std::wstringstream outputString; \
outputString << "destroynum " << x << " file= " << __FILE__ << ", line= " << __LINE__ << "\n"; \
OutputDebugString(outputString.str().c_str()); \
} \
_destroynum(x), (x) = nullptr
#else
#define createrat(y) (y)=_createrat()
#define destroyrat(x) _destroyrat(x),(x)=nullptr
#define createnum(y,x) (y)=_createnum(x)
#define destroynum(x) _destroynum(x),(x)=nullptr
#define createrat(y) (y) = _createrat()
#define destroyrat(x) _destroyrat(x), (x) = nullptr
#define createnum(y, x) (y) = _createnum(x)
#define destroynum(x) _destroynum(x), (x) = nullptr
#endif
//-----------------------------------------------------------------------------
@@ -197,40 +214,47 @@ _destroynum(x),(x)=nullptr
//-----------------------------------------------------------------------------
// RENORMALIZE, gets the exponents non-negative.
#define RENORMALIZE(x) if ( (x)->pp->exp < 0 ) { \
(x)->pq->exp -= (x)->pp->exp; \
(x)->pp->exp = 0; \
} \
if ( (x)->pq->exp < 0 ) { \
(x)->pp->exp -= (x)->pq->exp; \
(x)->pq->exp = 0; \
#define RENORMALIZE(x) \
if ((x)->pp->exp < 0) \
{ \
(x)->pq->exp -= (x)->pp->exp; \
(x)->pp->exp = 0; \
} \
if ((x)->pq->exp < 0) \
{ \
(x)->pp->exp -= (x)->pq->exp; \
(x)->pq->exp = 0; \
}
// TRIMNUM ASSUMES the number is in radix form NOT INTERNAL BASEX!!!
#define TRIMNUM(x, precision) if ( !g_ftrueinfinite ) { \
int32_t trim = (x)->cdigit - precision-g_ratio;\
if ( trim > 1 ) \
{ \
memmove( (x)->mant, &((x)->mant[trim]), sizeof(MANTTYPE)*((x)->cdigit-trim) ); \
(x)->cdigit -= trim; \
(x)->exp += trim; \
} \
}
#define TRIMNUM(x, precision) \
if (!g_ftrueinfinite) \
{ \
int32_t trim = (x)->cdigit - precision - g_ratio; \
if (trim > 1) \
{ \
memmove((x)->mant, &((x)->mant[trim]), sizeof(MANTTYPE) * ((x)->cdigit - trim)); \
(x)->cdigit -= trim; \
(x)->exp += trim; \
} \
}
// TRIMTOP ASSUMES the number is in INTERNAL BASEX!!!
#define TRIMTOP(x, precision) if ( !g_ftrueinfinite ) { \
int32_t trim = (x)->pp->cdigit - (precision/g_ratio) - 2;\
if ( trim > 1 ) \
{ \
memmove( (x)->pp->mant, &((x)->pp->mant[trim]), sizeof(MANTTYPE)*((x)->pp->cdigit-trim) ); \
(x)->pp->cdigit -= trim; \
(x)->pp->exp += trim; \
} \
trim = std::min((x)->pp->exp,(x)->pq->exp);\
(x)->pp->exp -= trim;\
(x)->pq->exp -= trim;\
}
#define TRIMTOP(x, precision) \
if (!g_ftrueinfinite) \
{ \
int32_t trim = (x)->pp->cdigit - (precision / g_ratio) - 2; \
if (trim > 1) \
{ \
memmove((x)->pp->mant, &((x)->pp->mant[trim]), sizeof(MANTTYPE) * ((x)->pp->cdigit - trim)); \
(x)->pp->cdigit -= trim; \
(x)->pp->exp += trim; \
} \
trim = std::min((x)->pp->exp, (x)->pq->exp); \
(x)->pp->exp -= trim; \
(x)->pq->exp -= trim; \
}
#define SMALL_ENOUGH_RAT(a, precision) (zernum((a)->pp) || ( ( ( (a)->pq->cdigit + (a)->pq->exp ) - ( (a)->pp->cdigit + (a)->pp->exp ) - 1 ) * g_ratio > precision ) )
#define SMALL_ENOUGH_RAT(a, precision) (zernum((a)->pp) || ((((a)->pq->cdigit + (a)->pq->exp) - ((a)->pp->cdigit + (a)->pp->exp) - 1) * g_ratio > precision))
//-----------------------------------------------------------------------------
//
@@ -239,50 +263,55 @@ memmove( (x)->pp->mant, &((x)->pp->mant[trim]), sizeof(MANTTYPE)*((x)->pp->cdigi
//
//-----------------------------------------------------------------------------
#define CREATETAYLOR() PRAT xx=nullptr;\
PNUMBER n2=nullptr; \
PRAT pret=nullptr; \
PRAT thisterm=nullptr; \
DUPRAT(xx,*px); \
mulrat(&xx,*px, precision); \
createrat(pret); \
pret->pp=i32tonum( 0L, BASEX ); \
pret->pq=i32tonum( 0L, BASEX );
#define CREATETAYLOR() \
PRAT xx = nullptr; \
PNUMBER n2 = nullptr; \
PRAT pret = nullptr; \
PRAT thisterm = nullptr; \
DUPRAT(xx, *px); \
mulrat(&xx, *px, precision); \
createrat(pret); \
pret->pp = i32tonum(0L, BASEX); \
pret->pq = i32tonum(0L, BASEX);
#define DESTROYTAYLOR() destroynum( n2 ); \
destroyrat( xx );\
destroyrat( thisterm );\
destroyrat( *px );\
trimit(&pret, precision);\
*px=pret;
#define DESTROYTAYLOR() \
destroynum(n2); \
destroyrat(xx); \
destroyrat(thisterm); \
destroyrat(*px); \
trimit(&pret, precision); \
*px = pret;
// INC(a) is the rational equivalent of a++
// Check to see if we can avoid doing this the hard way.
#define INC(a) if ( (a)->mant[0] < BASEX - 1 ) \
{ \
(a)->mant[0]++; \
} \
else \
{ \
addnum( &(a), num_one, BASEX); \
#define INC(a) \
if ((a)->mant[0] < BASEX - 1) \
{ \
(a)->mant[0]++; \
} \
else \
{ \
addnum(&(a), num_one, BASEX); \
}
#define MSD(x) ((x)->mant[(x)->cdigit-1])
#define MSD(x) ((x)->mant[(x)->cdigit - 1])
// MULNUM(b) is the rational equivalent of thisterm *= b where thisterm is
// a rational and b is a number, NOTE this is a mixed type operation for
// efficiency reasons.
#define MULNUM(b) mulnumx( &(thisterm->pp), b);
#define MULNUM(b) mulnumx(&(thisterm->pp), b);
// DIVNUM(b) is the rational equivalent of thisterm /= b where thisterm is
// a rational and b is a number, NOTE this is a mixed type operation for
// efficiency reasons.
#define DIVNUM(b) mulnumx( &(thisterm->pq), b);
#define DIVNUM(b) mulnumx(&(thisterm->pq), b);
// NEXTTERM(p,d) is the rational equivalent of
// thisterm *= p
// d <d is usually an expansion of operations to get thisterm updated.>
// pret += thisterm
#define NEXTTERM(p,d,precision) mulrat(&thisterm,p,precision);d addrat( &pret, thisterm, precision )
#define NEXTTERM(p, d, precision) \
mulrat(&thisterm, p, precision); \
d addrat(&pret, thisterm, precision)
//-----------------------------------------------------------------------------
//
@@ -292,9 +321,9 @@ memmove( (x)->pp->mant, &((x)->pp->mant[trim]), sizeof(MANTTYPE)*((x)->pp->cdigi
extern bool g_ftrueinfinite; // set to true to allow infinite precision
// don't use unless you know what you are doing
// used to help decide when to stop calculating.
// used to help decide when to stop calculating.
extern int32_t g_ratio; // Internally calculated ratio of internal radix
extern int32_t g_ratio; // Internally calculated ratio of internal radix
//-----------------------------------------------------------------------------
//
@@ -308,10 +337,10 @@ extern void SetDecimalSeparator(wchar_t decimalSeparator);
// Call whenever either radix or precision changes, is smarter about recalculating constants.
extern void ChangeConstants(uint32_t radix, int32_t precision);
extern bool equnum(_In_ PNUMBER a, _In_ PNUMBER b ); // returns true of a == b
extern bool lessnum(_In_ PNUMBER a, _In_ PNUMBER b ); // returns true of a < b
extern bool zernum(_In_ PNUMBER a ); // returns true of a == 0
extern bool zerrat(_In_ PRAT a ); // returns true if a == 0/q
extern bool equnum(_In_ PNUMBER a, _In_ PNUMBER b); // returns true of a == b
extern bool lessnum(_In_ PNUMBER a, _In_ PNUMBER b); // returns true of a < b
extern bool zernum(_In_ PNUMBER a); // returns true of a == 0
extern bool zerrat(_In_ PRAT a); // returns true if a == 0/q
extern std::wstring NumberToString(_Inout_ PNUMBER& pnum, int format, uint32_t radix, int32_t precision);
// returns a text representation of a PRAT
@@ -321,16 +350,20 @@ extern PNUMBER RatToNumber(_In_ PRAT prat, uint32_t radix, int32_t precision);
// flattens a PRAT by converting it to a PNUMBER and back to a PRAT
extern void flatrat(_Inout_ PRAT& prat, uint32_t radix, int32_t precision);
extern int32_t numtoi32(_In_ PNUMBER pnum, uint32_t radix );
extern int32_t numtoi32(_In_ PNUMBER pnum, uint32_t radix);
extern int32_t rattoi32(_In_ PRAT prat, uint32_t radix, int32_t precision);
uint64_t rattoUi64(_In_ PRAT prat, uint32_t radix, int32_t precision);
extern PNUMBER _createnum(_In_ uint32_t size ); // returns an empty number structure with size digits
extern PNUMBER _createnum(_In_ uint32_t size); // returns an empty number structure with size digits
extern PNUMBER nRadixxtonum(_In_ PNUMBER a, uint32_t radix, int32_t precision);
extern PNUMBER gcd(_In_ PNUMBER a, _In_ PNUMBER b );
extern PNUMBER StringToNumber(std::wstring_view numberString, uint32_t radix, int32_t precision); // takes a text representation of a number and returns a number.
extern PNUMBER gcd(_In_ PNUMBER a, _In_ PNUMBER b);
extern PNUMBER StringToNumber(
std::wstring_view numberString,
uint32_t radix,
int32_t precision); // takes a text representation of a number and returns a number.
// takes a text representation of a number as a mantissa with sign and an exponent with sign.
extern PRAT StringToRat(bool mantissaIsNegative, std::wstring_view mantissa, bool exponentIsNegative, std::wstring_view exponent, uint32_t radix, int32_t precision);
extern PRAT
StringToRat(bool mantissaIsNegative, std::wstring_view mantissa, bool exponentIsNegative, std::wstring_view exponent, uint32_t radix, int32_t precision);
extern PNUMBER i32factnum(int32_t ini32, uint32_t radix);
extern PNUMBER i32prodnum(int32_t start, int32_t stop, uint32_t radix);
@@ -339,118 +372,119 @@ extern PNUMBER Ui32tonum(uint32_t ini32, uint32_t radix);
extern PNUMBER numtonRadixx(PNUMBER a, uint32_t radix);
// creates a empty/undefined rational representation (p/q)
extern PRAT _createrat( void );
extern PRAT _createrat(void);
// returns a new rat structure with the acos of x->p/x->q taking into account
// angle type
extern void acosanglerat( _Inout_ PRAT *px, ANGLE_TYPE angletype, uint32_t radix, int32_t precision);
extern void acosanglerat(_Inout_ PRAT* px, ANGLE_TYPE angletype, uint32_t radix, int32_t precision);
// returns a new rat structure with the acosh of x->p/x->q
extern void acoshrat( _Inout_ PRAT *px, uint32_t radix, int32_t precision);
extern void acoshrat(_Inout_ PRAT* px, uint32_t radix, int32_t precision);
// returns a new rat structure with the acos of x->p/x->q
extern void acosrat( _Inout_ PRAT *px, uint32_t radix, int32_t precision);
extern void acosrat(_Inout_ PRAT* px, uint32_t radix, int32_t precision);
// returns a new rat structure with the asin of x->p/x->q taking into account
// angle type
extern void asinanglerat( _Inout_ PRAT *px, ANGLE_TYPE angletype, uint32_t radix, int32_t precision);
extern void asinanglerat(_Inout_ PRAT* px, ANGLE_TYPE angletype, uint32_t radix, int32_t precision);
extern void asinhrat( _Inout_ PRAT *px, uint32_t radix, int32_t precision);
extern void asinhrat(_Inout_ PRAT* px, uint32_t radix, int32_t precision);
// returns a new rat structure with the asinh of x->p/x->q
// returns a new rat structure with the asin of x->p/x->q
extern void asinrat( _Inout_ PRAT *px, uint32_t radix, int32_t precision);
extern void asinrat(_Inout_ PRAT* px, uint32_t radix, int32_t precision);
// returns a new rat structure with the atan of x->p/x->q taking into account
// angle type
extern void atananglerat( _Inout_ PRAT *px, ANGLE_TYPE angletype, uint32_t radix, int32_t precision);
extern void atananglerat(_Inout_ PRAT* px, ANGLE_TYPE angletype, uint32_t radix, int32_t precision);
// returns a new rat structure with the atanh of x->p/x->q
extern void atanhrat( _Inout_ PRAT *px, int32_t precision);
extern void atanhrat(_Inout_ PRAT* px, int32_t precision);
// returns a new rat structure with the atan of x->p/x->q
extern void atanrat( _Inout_ PRAT *px, uint32_t radix, int32_t precision);
extern void atanrat(_Inout_ PRAT* px, uint32_t radix, int32_t precision);
// returns a new rat structure with the cosh of x->p/x->q
extern void coshrat( _Inout_ PRAT *px, uint32_t radix, int32_t precision);
extern void coshrat(_Inout_ PRAT* px, uint32_t radix, int32_t precision);
// returns a new rat structure with the cos of x->p/x->q
extern void cosrat( _Inout_ PRAT *px, uint32_t radix, int32_t precision);
extern void cosrat(_Inout_ PRAT* px, uint32_t radix, int32_t precision);
// returns a new rat structure with the cos of x->p/x->q taking into account
// angle type
extern void cosanglerat( _Inout_ PRAT *px, ANGLE_TYPE angletype, uint32_t radix, int32_t precision);
extern void cosanglerat(_Inout_ PRAT* px, ANGLE_TYPE angletype, uint32_t radix, int32_t precision);
// returns a new rat structure with the exp of x->p/x->q this should not be called explicitly.
extern void _exprat( _Inout_ PRAT *px, int32_t precision);
extern void _exprat(_Inout_ PRAT* px, int32_t precision);
// returns a new rat structure with the exp of x->p/x->q
extern void exprat( _Inout_ PRAT *px, uint32_t radix, int32_t precision);
extern void exprat(_Inout_ PRAT* px, uint32_t radix, int32_t precision);
// returns a new rat structure with the log base 10 of x->p/x->q
extern void log10rat( _Inout_ PRAT *px, int32_t precision);
extern void log10rat(_Inout_ PRAT* px, int32_t precision);
// returns a new rat structure with the natural log of x->p/x->q
extern void lograt( _Inout_ PRAT *px, int32_t precision);
extern void lograt(_Inout_ PRAT* px, int32_t precision);
extern PRAT i32torat( int32_t ini32 );
extern PRAT Ui32torat( uint32_t inui32 );
extern PRAT numtorat( _In_ PNUMBER pin, uint32_t radix);
extern PRAT i32torat(int32_t ini32);
extern PRAT Ui32torat(uint32_t inui32);
extern PRAT numtorat(_In_ PNUMBER pin, uint32_t radix);
extern void sinhrat( _Inout_ PRAT *px, uint32_t radix, int32_t precision);
extern void sinrat( _Inout_ PRAT *px );
extern void sinhrat(_Inout_ PRAT* px, uint32_t radix, int32_t precision);
extern void sinrat(_Inout_ PRAT* px);
// returns a new rat structure with the sin of x->p/x->q taking into account
// angle type
extern void sinanglerat( _Inout_ PRAT *px, ANGLE_TYPE angletype, uint32_t radix, int32_t precision);
extern void sinanglerat(_Inout_ PRAT* px, ANGLE_TYPE angletype, uint32_t radix, int32_t precision);
extern void tanhrat( _Inout_ PRAT *px, uint32_t radix, int32_t precision);
extern void tanrat( _Inout_ PRAT *px, uint32_t radix, int32_t precision);
extern void tanhrat(_Inout_ PRAT* px, uint32_t radix, int32_t precision);
extern void tanrat(_Inout_ PRAT* px, uint32_t radix, int32_t precision);
// returns a new rat structure with the tan of x->p/x->q taking into account
// angle type
extern void tananglerat( _Inout_ PRAT *px, ANGLE_TYPE angletype, uint32_t radix, int32_t precision);
extern void tananglerat(_Inout_ PRAT* px, ANGLE_TYPE angletype, uint32_t radix, int32_t precision);
extern void _dupnum(_In_ PNUMBER dest, _In_ const NUMBER * const src);
extern void _dupnum(_In_ PNUMBER dest, _In_ const NUMBER* const src);
extern void _destroynum( _In_ PNUMBER pnum );
extern void _destroyrat( _In_ PRAT prat );
extern void addnum( _Inout_ PNUMBER *pa, _In_ PNUMBER b, uint32_t radix);
extern void addrat( _Inout_ PRAT *pa, _In_ PRAT b, int32_t precision);
extern void andrat( _Inout_ PRAT *pa, _In_ PRAT b, uint32_t radix, int32_t precision);
extern void divnum( _Inout_ PNUMBER *pa, _In_ PNUMBER b, uint32_t radix, int32_t precision);
extern void divnumx( _Inout_ PNUMBER *pa, _In_ PNUMBER b, int32_t precision);
extern void divrat( _Inout_ PRAT *pa, _In_ PRAT b, int32_t precision);
extern void fracrat( _Inout_ PRAT *pa , uint32_t radix, int32_t precision);
extern void factrat( _Inout_ PRAT *pa, uint32_t radix, int32_t precision);
extern void modrat( _Inout_ PRAT *pa, _In_ PRAT b );
extern void gcdrat( _Inout_ PRAT *pa, int32_t precision);
extern void intrat( _Inout_ PRAT *px, uint32_t radix, int32_t precision);
extern void mulnum( _Inout_ PNUMBER *pa, _In_ PNUMBER b, uint32_t radix);
extern void mulnumx( _Inout_ PNUMBER *pa, _In_ PNUMBER b );
extern void mulrat( _Inout_ PRAT *pa, _In_ PRAT b, int32_t precision);
extern void numpowi32( _Inout_ PNUMBER *proot, int32_t power, uint32_t radix, int32_t precision);
extern void numpowi32x( _Inout_ PNUMBER *proot, int32_t power );
extern void orrat( _Inout_ PRAT *pa, _In_ PRAT b, uint32_t radix, int32_t precision);
extern void powrat( _Inout_ PRAT *pa, _In_ PRAT b , uint32_t radix, int32_t precision);
extern void powratNumeratorDenominator(_Inout_ PRAT *pa, _In_ PRAT b, uint32_t radix, int32_t precision);
extern void powratcomp(_Inout_ PRAT *pa, _In_ PRAT b, uint32_t radix, int32_t precision);
extern void ratpowi32( _Inout_ PRAT *proot, int32_t power, int32_t precision);
extern void remnum( _Inout_ PNUMBER *pa, _In_ PNUMBER b, uint32_t radix);
extern void rootrat( _Inout_ PRAT *pa, _In_ PRAT b , uint32_t radix, int32_t precision);
extern void scale2pi( _Inout_ PRAT *px, uint32_t radix, int32_t precision);
extern void scale( _Inout_ PRAT *px, _In_ PRAT scalefact, uint32_t radix, int32_t precision);
extern void subrat( _Inout_ PRAT *pa, _In_ PRAT b, int32_t precision);
extern void xorrat( _Inout_ PRAT *pa, _In_ PRAT b, uint32_t radix, int32_t precision);
extern void lshrat( _Inout_ PRAT *pa, _In_ PRAT b , uint32_t radix, int32_t precision);
extern void rshrat( _Inout_ PRAT *pa, _In_ PRAT b, uint32_t radix, int32_t precision);
extern bool rat_equ( _In_ PRAT a, _In_ PRAT b, int32_t precision);
extern bool rat_neq( _In_ PRAT a, _In_ PRAT b, int32_t precision);
extern bool rat_gt( _In_ PRAT a, _In_ PRAT b, int32_t precision);
extern bool rat_ge( _In_ PRAT a, _In_ PRAT b, int32_t precision);
extern bool rat_lt( _In_ PRAT a, _In_ PRAT b, int32_t precision);
extern bool rat_le( _In_ PRAT a, _In_ PRAT b, int32_t precision);
extern void inbetween( _In_ PRAT *px, _In_ PRAT range, int32_t precision);
extern void trimit( _Inout_ PRAT *px, int32_t precision);
extern void _dumprawrat(_In_ const wchar_t *varname, _In_ PRAT rat, std::wostream& out);
extern void _dumprawnum(_In_ const wchar_t *varname, _In_ PNUMBER num, std::wostream& out);
extern void _destroynum(_In_ PNUMBER pnum);
extern void _destroyrat(_In_ PRAT prat);
extern void addnum(_Inout_ PNUMBER* pa, _In_ PNUMBER b, uint32_t radix);
extern void addrat(_Inout_ PRAT* pa, _In_ PRAT b, int32_t precision);
extern void andrat(_Inout_ PRAT* pa, _In_ PRAT b, uint32_t radix, int32_t precision);
extern void divnum(_Inout_ PNUMBER* pa, _In_ PNUMBER b, uint32_t radix, int32_t precision);
extern void divnumx(_Inout_ PNUMBER* pa, _In_ PNUMBER b, int32_t precision);
extern void divrat(_Inout_ PRAT* pa, _In_ PRAT b, int32_t precision);
extern void fracrat(_Inout_ PRAT* pa, uint32_t radix, int32_t precision);
extern void factrat(_Inout_ PRAT* pa, uint32_t radix, int32_t precision);
extern void remrat(_Inout_ PRAT* pa, _In_ PRAT b);
extern void modrat(_Inout_ PRAT* pa, _In_ PRAT b);
extern void gcdrat(_Inout_ PRAT* pa, int32_t precision);
extern void intrat(_Inout_ PRAT* px, uint32_t radix, int32_t precision);
extern void mulnum(_Inout_ PNUMBER* pa, _In_ PNUMBER b, uint32_t radix);
extern void mulnumx(_Inout_ PNUMBER* pa, _In_ PNUMBER b);
extern void mulrat(_Inout_ PRAT* pa, _In_ PRAT b, int32_t precision);
extern void numpowi32(_Inout_ PNUMBER* proot, int32_t power, uint32_t radix, int32_t precision);
extern void numpowi32x(_Inout_ PNUMBER* proot, int32_t power);
extern void orrat(_Inout_ PRAT* pa, _In_ PRAT b, uint32_t radix, int32_t precision);
extern void powrat(_Inout_ PRAT* pa, _In_ PRAT b, uint32_t radix, int32_t precision);
extern void powratNumeratorDenominator(_Inout_ PRAT* pa, _In_ PRAT b, uint32_t radix, int32_t precision);
extern void powratcomp(_Inout_ PRAT* pa, _In_ PRAT b, uint32_t radix, int32_t precision);
extern void ratpowi32(_Inout_ PRAT* proot, int32_t power, int32_t precision);
extern void remnum(_Inout_ PNUMBER* pa, _In_ PNUMBER b, uint32_t radix);
extern void rootrat(_Inout_ PRAT* pa, _In_ PRAT b, uint32_t radix, int32_t precision);
extern void scale2pi(_Inout_ PRAT* px, uint32_t radix, int32_t precision);
extern void scale(_Inout_ PRAT* px, _In_ PRAT scalefact, uint32_t radix, int32_t precision);
extern void subrat(_Inout_ PRAT* pa, _In_ PRAT b, int32_t precision);
extern void xorrat(_Inout_ PRAT* pa, _In_ PRAT b, uint32_t radix, int32_t precision);
extern void lshrat(_Inout_ PRAT* pa, _In_ PRAT b, uint32_t radix, int32_t precision);
extern void rshrat(_Inout_ PRAT* pa, _In_ PRAT b, uint32_t radix, int32_t precision);
extern bool rat_equ(_In_ PRAT a, _In_ PRAT b, int32_t precision);
extern bool rat_neq(_In_ PRAT a, _In_ PRAT b, int32_t precision);
extern bool rat_gt(_In_ PRAT a, _In_ PRAT b, int32_t precision);
extern bool rat_ge(_In_ PRAT a, _In_ PRAT b, int32_t precision);
extern bool rat_lt(_In_ PRAT a, _In_ PRAT b, int32_t precision);
extern bool rat_le(_In_ PRAT a, _In_ PRAT b, int32_t precision);
extern void inbetween(_In_ PRAT* px, _In_ PRAT range, int32_t precision);
extern void trimit(_Inout_ PRAT* px, int32_t precision);
extern void _dumprawrat(_In_ const wchar_t* varname, _In_ PRAT rat, std::wostream& out);
extern void _dumprawnum(_In_ const wchar_t* varname, _In_ PNUMBER num, std::wostream& out);

View File

@@ -1,4 +1,4 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
//----------------------------------------------------------------------------
@@ -18,35 +18,48 @@
//
//----------------------------------------------------------------------------
#include "pch.h"
#include <string>
#include <cstring> // for memmove
#include <iostream> // for wostream
#include "ratpak.h"
using namespace std;
void _readconstants( void );
void _readconstants(void);
#if defined( GEN_CONST )
#if defined(GEN_CONST)
static int cbitsofprecision = 0;
#define READRAWRAT(v)
#define READRAWNUM(v)
#define DUMPRAWRAT(v) _dumprawrat(#v,v, wcout)
#define DUMPRAWNUM(v) fprintf( stderr, \
"// Autogenerated by _dumprawrat in support.cpp\n" ); \
fprintf( stderr, "inline const NUMBER init_" #v "= {\n" ); \
_dumprawnum(v, wcout); \
fprintf( stderr, "};\n" )
#define DUMPRAWRAT(v) _dumprawrat(#v, v, wcout)
#define DUMPRAWNUM(v) \
fprintf(stderr, "// Autogenerated by _dumprawrat in support.cpp\n"); \
fprintf(stderr, "inline const NUMBER init_" #v "= {\n"); \
_dumprawnum(v, wcout); \
fprintf(stderr, "};\n")
#else
#define DUMPRAWRAT(v)
#define DUMPRAWNUM(v)
#define READRAWRAT(v) createrat(v); DUPNUM((v)->pp,(&(init_p_##v))); \
DUPNUM((v)->pq,(&(init_q_##v)));
#define READRAWNUM(v) DUPNUM(v,(&(init_##v)))
#define READRAWRAT(v) \
createrat(v); \
DUPNUM((v)->pp, (&(init_p_##v))); \
DUPNUM((v)->pq, (&(init_q_##v)));
#define READRAWNUM(v) DUPNUM(v, (&(init_##v)))
#define INIT_AND_DUMP_RAW_NUM_IF_NULL(r, v) if (r == nullptr) { r = i32tonum(v, BASEX); DUMPRAWNUM(v); }
#define INIT_AND_DUMP_RAW_RAT_IF_NULL(r, v) if (r == nullptr) { r = i32torat(v); DUMPRAWRAT(v); }
#define INIT_AND_DUMP_RAW_NUM_IF_NULL(r, v) \
if (r == nullptr) \
{ \
r = i32tonum(v, BASEX); \
DUMPRAWNUM(v); \
}
#define INIT_AND_DUMP_RAW_RAT_IF_NULL(r, v) \
if (r == nullptr) \
{ \
r = i32torat(v); \
DUMPRAWRAT(v); \
}
static constexpr int RATIO_FOR_DECIMAL = 9;
static constexpr int DECIMAL = 10;
@@ -58,51 +71,51 @@ static int cbitsofprecision = RATIO_FOR_DECIMAL * DECIMAL * CALC_DECIMAL_DIGITS_
#endif
bool g_ftrueinfinite = false; // Set to true if you don't want
// chopping internally
// precision used internally
bool g_ftrueinfinite = false; // Set to true if you don't want
// chopping internally
// precision used internally
PNUMBER num_one= nullptr;
PNUMBER num_two= nullptr;
PNUMBER num_five= nullptr;
PNUMBER num_six= nullptr;
PNUMBER num_ten= nullptr;
PNUMBER num_one = nullptr;
PNUMBER num_two = nullptr;
PNUMBER num_five = nullptr;
PNUMBER num_six = nullptr;
PNUMBER num_ten = nullptr;
PRAT ln_ten= nullptr;
PRAT ln_two= nullptr;
PRAT rat_zero= nullptr;
PRAT rat_one= nullptr;
PRAT rat_neg_one= nullptr;
PRAT rat_two= nullptr;
PRAT rat_six= nullptr;
PRAT rat_half= nullptr;
PRAT rat_ten= nullptr;
PRAT pt_eight_five= nullptr;
PRAT pi= nullptr;
PRAT pi_over_two= nullptr;
PRAT two_pi= nullptr;
PRAT one_pt_five_pi= nullptr;
PRAT e_to_one_half= nullptr;
PRAT rat_exp= nullptr;
PRAT rad_to_deg= nullptr;
PRAT rad_to_grad= nullptr;
PRAT rat_qword= nullptr;
PRAT rat_dword= nullptr; // unsigned max ui32
PRAT rat_word= nullptr;
PRAT rat_byte= nullptr;
PRAT rat_360= nullptr;
PRAT rat_400= nullptr;
PRAT rat_180= nullptr;
PRAT rat_200= nullptr;
PRAT rat_nRadix= nullptr;
PRAT rat_smallest= nullptr;
PRAT rat_negsmallest= nullptr;
PRAT rat_max_exp= nullptr;
PRAT rat_min_exp= nullptr;
PRAT ln_ten = nullptr;
PRAT ln_two = nullptr;
PRAT rat_zero = nullptr;
PRAT rat_one = nullptr;
PRAT rat_neg_one = nullptr;
PRAT rat_two = nullptr;
PRAT rat_six = nullptr;
PRAT rat_half = nullptr;
PRAT rat_ten = nullptr;
PRAT pt_eight_five = nullptr;
PRAT pi = nullptr;
PRAT pi_over_two = nullptr;
PRAT two_pi = nullptr;
PRAT one_pt_five_pi = nullptr;
PRAT e_to_one_half = nullptr;
PRAT rat_exp = nullptr;
PRAT rad_to_deg = nullptr;
PRAT rad_to_grad = nullptr;
PRAT rat_qword = nullptr;
PRAT rat_dword = nullptr; // unsigned max ui32
PRAT rat_word = nullptr;
PRAT rat_byte = nullptr;
PRAT rat_360 = nullptr;
PRAT rat_400 = nullptr;
PRAT rat_180 = nullptr;
PRAT rat_200 = nullptr;
PRAT rat_nRadix = nullptr;
PRAT rat_smallest = nullptr;
PRAT rat_negsmallest = nullptr;
PRAT rat_max_exp = nullptr;
PRAT rat_min_exp = nullptr;
PRAT rat_max_fact = nullptr;
PRAT rat_min_fact = nullptr;
PRAT rat_min_i32= nullptr; // min signed i32
PRAT rat_max_i32= nullptr; // max signed i32
PRAT rat_min_i32 = nullptr; // min signed i32
PRAT rat_max_i32 = nullptr; // max signed i32
//----------------------------------------------------------------------------
//
@@ -125,14 +138,14 @@ void ChangeConstants(uint32_t radix, int32_t precision)
uint64_t limit = static_cast<uint64_t>(BASEX) / static_cast<uint64_t>(radix);
g_ratio = 0;
for (uint32_t digit = 1; digit < limit; digit *= radix )
for (uint32_t digit = 1; digit < limit; digit *= radix)
{
g_ratio++;
}
g_ratio += !g_ratio;
destroyrat(rat_nRadix);
rat_nRadix=i32torat( radix );
rat_nRadix = i32torat(radix);
// Check to see what we have to recalculate and what we don't
if (cbitsofprecision < (g_ratio * static_cast<int32_t>(radix) * precision))
@@ -251,7 +264,6 @@ void ChangeConstants(uint32_t radix, int32_t precision)
lograt(&ln_two, extraPrecision);
DUMPRAWRAT(ln_two);
destroyrat(rad_to_deg);
rad_to_deg = i32torat(180L);
divrat(&rad_to_deg, pi, extraPrecision);
@@ -271,7 +283,6 @@ void ChangeConstants(uint32_t radix, int32_t precision)
DUPRAT(rat_negsmallest, rat_smallest);
rat_negsmallest->pp->sign = -1;
}
}
//----------------------------------------------------------------------------
@@ -285,21 +296,21 @@ void ChangeConstants(uint32_t radix, int32_t precision)
//
//----------------------------------------------------------------------------
void intrat( PRAT *px, uint32_t radix, int32_t precision)
void intrat(PRAT* px, uint32_t radix, int32_t precision)
{
// Only do the intrat operation if number is nonzero.
// and only if the bottom part is not one.
if ( !zernum( (*px)->pp ) && !equnum( (*px)->pq, num_one ) )
if (!zernum((*px)->pp) && !equnum((*px)->pq, num_one))
{
flatrat(*px, radix, precision);
// Subtract the fractional part of the rational
PRAT pret = nullptr;
DUPRAT(pret,*px);
modrat( &pret, rat_one );
DUPRAT(pret, *px);
remrat(&pret, rat_one);
subrat( px, pret, precision);
destroyrat( pret );
subrat(px, pret, precision);
destroyrat(pret);
// Simplify the value if possible to resolve rounding errors
flatrat(*px, radix, precision);
@@ -317,16 +328,16 @@ void intrat( PRAT *px, uint32_t radix, int32_t precision)
//
//---------------------------------------------------------------------------
bool rat_equ( PRAT a, PRAT b, int32_t precision)
bool rat_equ(PRAT a, PRAT b, int32_t precision)
{
PRAT rattmp= nullptr;
DUPRAT(rattmp,a);
PRAT rattmp = nullptr;
DUPRAT(rattmp, a);
rattmp->pp->sign *= -1;
addrat( &rattmp, b, precision);
bool bret = zernum( rattmp->pp );
destroyrat( rattmp );
return( bret );
addrat(&rattmp, b, precision);
bool bret = zernum(rattmp->pp);
destroyrat(rattmp);
return (bret);
}
//---------------------------------------------------------------------------
@@ -340,21 +351,19 @@ bool rat_equ( PRAT a, PRAT b, int32_t precision)
//
//---------------------------------------------------------------------------
bool rat_ge( PRAT a, PRAT b, int32_t precision)
bool rat_ge(PRAT a, PRAT b, int32_t precision)
{
PRAT rattmp= nullptr;
DUPRAT(rattmp,a);
PRAT rattmp = nullptr;
DUPRAT(rattmp, a);
b->pp->sign *= -1;
addrat( &rattmp, b, precision);
addrat(&rattmp, b, precision);
b->pp->sign *= -1;
bool bret = ( zernum( rattmp->pp ) ||
rattmp->pp->sign * rattmp->pq->sign == 1 );
destroyrat( rattmp );
return( bret );
bool bret = (zernum(rattmp->pp) || SIGN(rattmp) == 1);
destroyrat(rattmp);
return (bret);
}
//---------------------------------------------------------------------------
//
// FUNCTION: rat_gt
@@ -366,18 +375,17 @@ bool rat_ge( PRAT a, PRAT b, int32_t precision)
//
//---------------------------------------------------------------------------
bool rat_gt( PRAT a, PRAT b, int32_t precision)
bool rat_gt(PRAT a, PRAT b, int32_t precision)
{
PRAT rattmp= nullptr;
DUPRAT(rattmp,a);
PRAT rattmp = nullptr;
DUPRAT(rattmp, a);
b->pp->sign *= -1;
addrat( &rattmp, b, precision);
addrat(&rattmp, b, precision);
b->pp->sign *= -1;
bool bret = ( !zernum( rattmp->pp ) &&
rattmp->pp->sign * rattmp->pq->sign == 1 );
destroyrat( rattmp );
return( bret );
bool bret = (!zernum(rattmp->pp) && SIGN(rattmp) == 1);
destroyrat(rattmp);
return (bret);
}
//---------------------------------------------------------------------------
@@ -391,22 +399,19 @@ bool rat_gt( PRAT a, PRAT b, int32_t precision)
//
//---------------------------------------------------------------------------
bool rat_le( PRAT a, PRAT b, int32_t precision)
bool rat_le(PRAT a, PRAT b, int32_t precision)
{
PRAT rattmp= nullptr;
DUPRAT(rattmp,a);
PRAT rattmp = nullptr;
DUPRAT(rattmp, a);
b->pp->sign *= -1;
addrat( &rattmp, b, precision);
addrat(&rattmp, b, precision);
b->pp->sign *= -1;
bool bret = ( zernum( rattmp->pp ) ||
rattmp->pp->sign * rattmp->pq->sign == -1 );
destroyrat( rattmp );
return( bret );
bool bret = (zernum(rattmp->pp) || SIGN(rattmp) == -1);
destroyrat(rattmp);
return (bret);
}
//---------------------------------------------------------------------------
//
// FUNCTION: rat_lt
@@ -418,21 +423,19 @@ bool rat_le( PRAT a, PRAT b, int32_t precision)
//
//---------------------------------------------------------------------------
bool rat_lt( PRAT a, PRAT b, int32_t precision)
bool rat_lt(PRAT a, PRAT b, int32_t precision)
{
PRAT rattmp= nullptr;
DUPRAT(rattmp,a);
PRAT rattmp = nullptr;
DUPRAT(rattmp, a);
b->pp->sign *= -1;
addrat( &rattmp, b, precision);
addrat(&rattmp, b, precision);
b->pp->sign *= -1;
bool bret = ( !zernum( rattmp->pp ) &&
rattmp->pp->sign * rattmp->pq->sign == -1 );
destroyrat( rattmp );
return( bret );
bool bret = (!zernum(rattmp->pp) && SIGN(rattmp) == -1);
destroyrat(rattmp);
return (bret);
}
//---------------------------------------------------------------------------
//
// FUNCTION: rat_neq
@@ -444,17 +447,16 @@ bool rat_lt( PRAT a, PRAT b, int32_t precision)
//
//---------------------------------------------------------------------------
bool rat_neq( PRAT a, PRAT b, int32_t precision)
bool rat_neq(PRAT a, PRAT b, int32_t precision)
{
PRAT rattmp= nullptr;
DUPRAT(rattmp,a);
PRAT rattmp = nullptr;
DUPRAT(rattmp, a);
rattmp->pp->sign *= -1;
addrat( &rattmp, b, precision);
bool bret = !( zernum( rattmp->pp ) );
destroyrat( rattmp );
return( bret );
addrat(&rattmp, b, precision);
bool bret = !(zernum(rattmp->pp));
destroyrat(rattmp);
return (bret);
}
//---------------------------------------------------------------------------
@@ -468,27 +470,26 @@ bool rat_neq( PRAT a, PRAT b, int32_t precision)
//
//---------------------------------------------------------------------------
void scale( PRAT *px, PRAT scalefact, uint32_t radix, int32_t precision )
void scale(PRAT* px, PRAT scalefact, uint32_t radix, int32_t precision)
{
PRAT pret = nullptr;
DUPRAT(pret,*px);
DUPRAT(pret, *px);
// Logscale is a quick way to tell how much extra precision is needed for
// scaling by scalefact.
int32_t logscale = g_ratio * ( (pret->pp->cdigit+pret->pp->exp) -
(pret->pq->cdigit+pret->pq->exp) );
if ( logscale > 0 )
int32_t logscale = g_ratio * ((pret->pp->cdigit + pret->pp->exp) - (pret->pq->cdigit + pret->pq->exp));
if (logscale > 0)
{
precision += logscale;
}
divrat( &pret, scalefact, precision);
divrat(&pret, scalefact, precision);
intrat(&pret, radix, precision);
mulrat( &pret, scalefact, precision);
mulrat(&pret, scalefact, precision);
pret->pp->sign *= -1;
addrat( px, pret, precision);
addrat(px, pret, precision);
destroyrat( pret );
destroyrat(pret);
}
//---------------------------------------------------------------------------
@@ -502,38 +503,37 @@ void scale( PRAT *px, PRAT scalefact, uint32_t radix, int32_t precision )
//
//---------------------------------------------------------------------------
void scale2pi( PRAT *px, uint32_t radix, int32_t precision )
void scale2pi(PRAT* px, uint32_t radix, int32_t precision)
{
PRAT pret = nullptr;
PRAT my_two_pi = nullptr;
DUPRAT(pret,*px);
DUPRAT(pret, *px);
// Logscale is a quick way to tell how much extra precision is needed for
// scaling by 2 pi.
int32_t logscale = g_ratio * ( (pret->pp->cdigit+pret->pp->exp) -
(pret->pq->cdigit+pret->pq->exp) );
if ( logscale > 0 )
int32_t logscale = g_ratio * ((pret->pp->cdigit + pret->pp->exp) - (pret->pq->cdigit + pret->pq->exp));
if (logscale > 0)
{
precision += logscale;
DUPRAT(my_two_pi,rat_half);
asinrat( &my_two_pi, radix, precision);
mulrat( &my_two_pi, rat_six, precision);
mulrat( &my_two_pi, rat_two, precision);
DUPRAT(my_two_pi, rat_half);
asinrat(&my_two_pi, radix, precision);
mulrat(&my_two_pi, rat_six, precision);
mulrat(&my_two_pi, rat_two, precision);
}
else
{
DUPRAT(my_two_pi,two_pi);
DUPRAT(my_two_pi, two_pi);
logscale = 0;
}
divrat( &pret, my_two_pi, precision);
divrat(&pret, my_two_pi, precision);
intrat(&pret, radix, precision);
mulrat( &pret, my_two_pi, precision);
mulrat(&pret, my_two_pi, precision);
pret->pp->sign *= -1;
addrat( px, pret, precision);
addrat(px, pret, precision);
destroyrat( my_two_pi );
destroyrat( pret );
destroyrat(my_two_pi);
destroyrat(pret);
}
//---------------------------------------------------------------------------
@@ -546,22 +546,22 @@ void scale2pi( PRAT *px, uint32_t radix, int32_t precision )
//
//---------------------------------------------------------------------------
void inbetween( PRAT *px, PRAT range, int32_t precision)
void inbetween(PRAT* px, PRAT range, int32_t precision)
{
if ( rat_gt(*px,range, precision) )
{
DUPRAT(*px,range);
}
if (rat_gt(*px, range, precision))
{
DUPRAT(*px, range);
}
else
{
range->pp->sign *= -1;
if (rat_lt(*px, range, precision))
{
range->pp->sign *= -1;
if ( rat_lt(*px, range, precision) )
{
DUPRAT(*px,range);
}
range->pp->sign *= -1;
DUPRAT(*px, range);
}
range->pp->sign *= -1;
}
}
//---------------------------------------------------------------------------
@@ -575,11 +575,11 @@ void inbetween( PRAT *px, PRAT range, int32_t precision)
//
//---------------------------------------------------------------------------
void _dumprawrat( const wchar_t *varname, PRAT rat, wostream& out)
void _dumprawrat(const wchar_t* varname, PRAT rat, wostream& out)
{
_dumprawnum(varname, rat->pp, out );
_dumprawnum(varname, rat->pq, out );
_dumprawnum(varname, rat->pp, out);
_dumprawnum(varname, rat->pq, out);
}
//---------------------------------------------------------------------------
@@ -593,26 +593,26 @@ void _dumprawrat( const wchar_t *varname, PRAT rat, wostream& out)
//
//---------------------------------------------------------------------------
void _dumprawnum(const wchar_t *varname, PNUMBER num, wostream& out)
void _dumprawnum(const wchar_t* varname, PNUMBER num, wostream& out)
{
int i;
out << L"NUMBER " << varname << L" = {\n";
out << L"\t"<< num->sign << L",\n";
out << L"\t" << num->sign << L",\n";
out << L"\t" << num->cdigit << L",\n";
out << L"\t" << num->exp << L",\n";
out << L"\t{ ";
for ( i = 0; i < num->cdigit; i++ )
{
out << L" "<< num->mant[i] << L",";
}
for (i = 0; i < num->cdigit; i++)
{
out << L" " << num->mant[i] << L",";
}
out << L"}\n";
out << L"};\n";
}
void _readconstants( void )
void _readconstants(void)
{
READRAWNUM(num_one);
@@ -676,43 +676,43 @@ void _readconstants( void )
//
//---------------------------------------------------------------------------
void trimit( PRAT *px, int32_t precision)
void trimit(PRAT* px, int32_t precision)
{
if ( !g_ftrueinfinite )
{
if (!g_ftrueinfinite)
{
int32_t trim;
PNUMBER pp=(*px)->pp;
PNUMBER pq=(*px)->pq;
trim = g_ratio * (min((pp->cdigit+pp->exp),(pq->cdigit+pq->exp))-1) - precision;
if ( trim > g_ratio )
{
PNUMBER pp = (*px)->pp;
PNUMBER pq = (*px)->pq;
trim = g_ratio * (min((pp->cdigit + pp->exp), (pq->cdigit + pq->exp)) - 1) - precision;
if (trim > g_ratio)
{
trim /= g_ratio;
if ( trim <= pp->exp )
{
if (trim <= pp->exp)
{
pp->exp -= trim;
}
else
{
memmove( pp->mant, &(pp->mant[trim-pp->exp]), sizeof(MANTTYPE)*(pp->cdigit-trim+pp->exp) );
pp->cdigit -= trim-pp->exp;
pp->exp = 0;
}
if ( trim <= pq->exp )
{
pq->exp -= trim;
}
else
{
memmove( pq->mant, &(pq->mant[trim-pq->exp]), sizeof(MANTTYPE)*(pq->cdigit-trim+pq->exp) );
pq->cdigit -= trim-pq->exp;
pq->exp = 0;
}
}
trim = min(pp->exp,pq->exp);
else
{
memmove(pp->mant, &(pp->mant[trim - pp->exp]), sizeof(MANTTYPE) * (pp->cdigit - trim + pp->exp));
pp->cdigit -= trim - pp->exp;
pp->exp = 0;
}
if (trim <= pq->exp)
{
pq->exp -= trim;
}
else
{
memmove(pq->mant, &(pq->mant[trim - pq->exp]), sizeof(MANTTYPE) * (pq->cdigit - trim + pq->exp));
pq->cdigit -= trim - pq->exp;
pq->exp = 0;
}
}
trim = min(pp->exp, pq->exp);
pp->exp -= trim;
pq->exp -= trim;
}
}
}

View File

@@ -14,28 +14,24 @@
//
//----------------------------------------------------------------------------
#include "pch.h"
#include "ratpak.h"
void scalerat( _Inout_ PRAT *pa, ANGLE_TYPE angletype, uint32_t radix, int32_t precision )
void scalerat(_Inout_ PRAT* pa, ANGLE_TYPE angletype, uint32_t radix, int32_t precision)
{
switch ( angletype )
switch (angletype)
{
case ANGLE_RAD:
scale2pi( pa, radix, precision);
scale2pi(pa, radix, precision);
break;
case ANGLE_DEG:
scale( pa, rat_360, radix, precision);
scale(pa, rat_360, radix, precision);
break;
case ANGLE_GRAD:
scale( pa, rat_400, radix, precision);
scale(pa, rat_400, radix, precision);
break;
}
}
//-----------------------------------------------------------------------------
//
// FUNCTION: sinrat, _sinrat
@@ -67,21 +63,21 @@ void scalerat( _Inout_ PRAT *pa, ANGLE_TYPE angletype, uint32_t radix, int32_t p
//
//-----------------------------------------------------------------------------
void _sinrat( PRAT *px, int32_t precision)
void _sinrat(PRAT* px, int32_t precision)
{
CREATETAYLOR();
DUPRAT(pret,*px);
DUPRAT(thisterm,*px);
DUPRAT(pret, *px);
DUPRAT(thisterm, *px);
DUPNUM(n2,num_one);
DUPNUM(n2, num_one);
xx->pp->sign *= -1;
do {
NEXTTERM(xx,INC(n2) DIVNUM(n2) INC(n2) DIVNUM(n2), precision);
} while ( !SMALL_ENOUGH_RAT( thisterm, precision) );
do
{
NEXTTERM(xx, INC(n2) DIVNUM(n2) INC(n2) DIVNUM(n2), precision);
} while (!SMALL_ENOUGH_RAT(thisterm, precision));
DESTROYTAYLOR();
@@ -90,42 +86,42 @@ void _sinrat( PRAT *px, int32_t precision)
inbetween(px, rat_one, precision);
// Since *px might be epsilon near zero we must set it to zero.
if ( rat_le(*px, rat_smallest, precision) && rat_ge(*px, rat_negsmallest, precision) )
{
DUPRAT(*px,rat_zero);
}
if (rat_le(*px, rat_smallest, precision) && rat_ge(*px, rat_negsmallest, precision))
{
DUPRAT(*px, rat_zero);
}
}
void sinrat( PRAT *px, uint32_t radix, int32_t precision)
void sinrat(PRAT* px, uint32_t radix, int32_t precision)
{
scale2pi(px, radix, precision);
_sinrat(px, precision);
}
void sinanglerat( _Inout_ PRAT *pa, ANGLE_TYPE angletype, uint32_t radix, int32_t precision)
void sinanglerat(_Inout_ PRAT* pa, ANGLE_TYPE angletype, uint32_t radix, int32_t precision)
{
scalerat( pa, angletype, radix, precision);
switch ( angletype )
{
scalerat(pa, angletype, radix, precision);
switch (angletype)
{
case ANGLE_DEG:
if ( rat_gt( *pa, rat_180, precision) )
{
if (rat_gt(*pa, rat_180, precision))
{
subrat(pa, rat_360, precision);
}
divrat( pa, rat_180, precision);
mulrat( pa, pi, precision);
}
divrat(pa, rat_180, precision);
mulrat(pa, pi, precision);
break;
case ANGLE_GRAD:
if ( rat_gt( *pa, rat_200, precision) )
{
subrat(pa,rat_400, precision);
}
divrat( pa, rat_200, precision);
mulrat( pa, pi, precision);
break;
if (rat_gt(*pa, rat_200, precision))
{
subrat(pa, rat_400, precision);
}
_sinrat( pa, precision);
divrat(pa, rat_200, precision);
mulrat(pa, pi, precision);
break;
}
_sinrat(pa, precision);
}
//-----------------------------------------------------------------------------
@@ -159,8 +155,7 @@ void sinanglerat( _Inout_ PRAT *pa, ANGLE_TYPE angletype, uint32_t radix, int32_
//
//-----------------------------------------------------------------------------
void _cosrat( PRAT *px, uint32_t radix, int32_t precision)
void _cosrat(PRAT* px, uint32_t radix, int32_t precision)
{
CREATETAYLOR();
@@ -168,67 +163,68 @@ void _cosrat( PRAT *px, uint32_t radix, int32_t precision)
destroynum(pret->pp);
destroynum(pret->pq);
pret->pp=i32tonum( 1L, radix);
pret->pq=i32tonum( 1L, radix);
pret->pp = i32tonum(1L, radix);
pret->pq = i32tonum(1L, radix);
DUPRAT(thisterm,pret)
DUPRAT(thisterm, pret)
n2=i32tonum(0L, radix);
n2 = i32tonum(0L, radix);
xx->pp->sign *= -1;
do {
NEXTTERM(xx,INC(n2) DIVNUM(n2) INC(n2) DIVNUM(n2), precision);
} while ( !SMALL_ENOUGH_RAT( thisterm, precision) );
do
{
NEXTTERM(xx, INC(n2) DIVNUM(n2) INC(n2) DIVNUM(n2), precision);
} while (!SMALL_ENOUGH_RAT(thisterm, precision));
DESTROYTAYLOR();
// Since *px might be epsilon above 1 or below -1, due to TRIMIT we need
// this trick here.
inbetween(px, rat_one, precision);
// Since *px might be epsilon near zero we must set it to zero.
if ( rat_le(*px, rat_smallest, precision) && rat_ge(*px, rat_negsmallest, precision) )
{
DUPRAT(*px,rat_zero);
}
if (rat_le(*px, rat_smallest, precision) && rat_ge(*px, rat_negsmallest, precision))
{
DUPRAT(*px, rat_zero);
}
}
void cosrat( PRAT *px, uint32_t radix, int32_t precision)
void cosrat(PRAT* px, uint32_t radix, int32_t precision)
{
scale2pi(px, radix, precision);
_cosrat(px, radix, precision);
}
void cosanglerat( _Inout_ PRAT *pa, ANGLE_TYPE angletype, uint32_t radix, int32_t precision)
void cosanglerat(_Inout_ PRAT* pa, ANGLE_TYPE angletype, uint32_t radix, int32_t precision)
{
scalerat( pa, angletype, radix, precision);
switch ( angletype )
{
scalerat(pa, angletype, radix, precision);
switch (angletype)
{
case ANGLE_DEG:
if ( rat_gt( *pa, rat_180, precision) )
{
PRAT ptmp= nullptr;
DUPRAT(ptmp,rat_360);
if (rat_gt(*pa, rat_180, precision))
{
PRAT ptmp = nullptr;
DUPRAT(ptmp, rat_360);
subrat(&ptmp, *pa, precision);
destroyrat(*pa);
*pa=ptmp;
}
divrat( pa, rat_180, precision);
mulrat( pa, pi, precision);
*pa = ptmp;
}
divrat(pa, rat_180, precision);
mulrat(pa, pi, precision);
break;
case ANGLE_GRAD:
if ( rat_gt( *pa, rat_200, precision) )
{
PRAT ptmp= nullptr;
DUPRAT(ptmp,rat_400);
if (rat_gt(*pa, rat_200, precision))
{
PRAT ptmp = nullptr;
DUPRAT(ptmp, rat_400);
subrat(&ptmp, *pa, precision);
destroyrat(*pa);
*pa=ptmp;
}
divrat( pa, rat_200, precision);
mulrat( pa, pi, precision);
break;
*pa = ptmp;
}
_cosrat( pa, radix, precision);
divrat(pa, rat_200, precision);
mulrat(pa, pi, precision);
break;
}
_cosrat(pa, radix, precision);
}
//-----------------------------------------------------------------------------
@@ -243,55 +239,52 @@ void cosanglerat( _Inout_ PRAT *pa, ANGLE_TYPE angletype, uint32_t radix, int32_
//
//-----------------------------------------------------------------------------
void _tanrat( PRAT *px, uint32_t radix, int32_t precision)
void _tanrat(PRAT* px, uint32_t radix, int32_t precision)
{
PRAT ptmp= nullptr;
PRAT ptmp = nullptr;
DUPRAT(ptmp,*px);
DUPRAT(ptmp, *px);
_sinrat(px, precision);
_cosrat(&ptmp, radix, precision);
if ( zerrat( ptmp ) )
{
if (zerrat(ptmp))
{
destroyrat(ptmp);
throw( CALC_E_DOMAIN );
}
throw(CALC_E_DOMAIN);
}
divrat(px, ptmp, precision);
destroyrat(ptmp);
}
void tanrat( PRAT *px, uint32_t radix, int32_t precision)
void tanrat(PRAT* px, uint32_t radix, int32_t precision)
{
scale2pi(px, radix, precision);
_tanrat(px, radix, precision);
}
void tananglerat( _Inout_ PRAT *pa, ANGLE_TYPE angletype, uint32_t radix, int32_t precision)
void tananglerat(_Inout_ PRAT* pa, ANGLE_TYPE angletype, uint32_t radix, int32_t precision)
{
scalerat( pa, angletype, radix, precision);
switch ( angletype )
{
scalerat(pa, angletype, radix, precision);
switch (angletype)
{
case ANGLE_DEG:
if ( rat_gt( *pa, rat_180, precision) )
{
if (rat_gt(*pa, rat_180, precision))
{
subrat(pa, rat_180, precision);
}
divrat( pa, rat_180, precision);
mulrat( pa, pi, precision);
}
divrat(pa, rat_180, precision);
mulrat(pa, pi, precision);
break;
case ANGLE_GRAD:
if ( rat_gt( *pa, rat_200, precision) )
{
if (rat_gt(*pa, rat_200, precision))
{
subrat(pa, rat_200, precision);
}
divrat( pa, rat_200, precision);
mulrat( pa, pi, precision);
break;
}
_tanrat( pa, radix, precision);
divrat(pa, rat_200, precision);
mulrat(pa, pi, precision);
break;
}
_tanrat(pa, radix, precision);
}

View File

@@ -14,25 +14,21 @@
//
//
//-----------------------------------------------------------------------------
#include "pch.h"
#include "ratpak.h"
bool IsValidForHypFunc(PRAT px, int32_t precision)
{
PRAT ptmp = nullptr;
bool bRet = true;
DUPRAT(ptmp,rat_min_exp);
DUPRAT(ptmp, rat_min_exp);
divrat(&ptmp, rat_ten, precision);
if ( rat_lt( px, ptmp, precision) )
if (rat_lt(px, ptmp, precision))
{
bRet = false;
}
destroyrat( ptmp );
destroyrat(ptmp);
return bRet;
}
//-----------------------------------------------------------------------------
@@ -68,49 +64,49 @@ bool IsValidForHypFunc(PRAT px, int32_t precision)
//
//-----------------------------------------------------------------------------
void _sinhrat( PRAT *px, int32_t precision)
void _sinhrat(PRAT* px, int32_t precision)
{
if ( !IsValidForHypFunc(*px, precision))
{
if (!IsValidForHypFunc(*px, precision))
{
// Don't attempt exp of anything large or small
throw( CALC_E_DOMAIN );
}
throw(CALC_E_DOMAIN);
}
CREATETAYLOR();
DUPRAT(pret,*px);
DUPRAT(thisterm,pret);
DUPRAT(pret, *px);
DUPRAT(thisterm, pret);
DUPNUM(n2,num_one);
DUPNUM(n2, num_one);
do {
NEXTTERM(xx,INC(n2) DIVNUM(n2) INC(n2) DIVNUM(n2), precision);
} while ( !SMALL_ENOUGH_RAT( thisterm, precision) );
do
{
NEXTTERM(xx, INC(n2) DIVNUM(n2) INC(n2) DIVNUM(n2), precision);
} while (!SMALL_ENOUGH_RAT(thisterm, precision));
DESTROYTAYLOR();
}
void sinhrat( PRAT *px, uint32_t radix, int32_t precision)
void sinhrat(PRAT* px, uint32_t radix, int32_t precision)
{
PRAT tmpx= nullptr;
PRAT tmpx = nullptr;
if ( rat_ge( *px, rat_one, precision) )
{
DUPRAT(tmpx,*px);
if (rat_ge(*px, rat_one, precision))
{
DUPRAT(tmpx, *px);
exprat(px, radix, precision);
tmpx->pp->sign *= -1;
exprat(&tmpx, radix, precision);
subrat( px, tmpx, precision);
divrat( px, rat_two, precision);
destroyrat( tmpx );
}
subrat(px, tmpx, precision);
divrat(px, rat_two, precision);
destroyrat(tmpx);
}
else
{
_sinhrat( px, precision);
}
{
_sinhrat(px, precision);
}
}
//-----------------------------------------------------------------------------
@@ -147,59 +143,59 @@ void sinhrat( PRAT *px, uint32_t radix, int32_t precision)
//
//-----------------------------------------------------------------------------
void _coshrat( PRAT *px, uint32_t radix, int32_t precision)
void _coshrat(PRAT* px, uint32_t radix, int32_t precision)
{
if ( !IsValidForHypFunc(*px, precision))
{
if (!IsValidForHypFunc(*px, precision))
{
// Don't attempt exp of anything large or small
throw( CALC_E_DOMAIN );
}
throw(CALC_E_DOMAIN);
}
CREATETAYLOR();
pret->pp=i32tonum( 1L, radix);
pret->pq=i32tonum( 1L, radix);
pret->pp = i32tonum(1L, radix);
pret->pq = i32tonum(1L, radix);
DUPRAT(thisterm,pret)
DUPRAT(thisterm, pret)
n2=i32tonum(0L, radix);
n2 = i32tonum(0L, radix);
do {
NEXTTERM(xx,INC(n2) DIVNUM(n2) INC(n2) DIVNUM(n2), precision);
} while ( !SMALL_ENOUGH_RAT( thisterm, precision) );
do
{
NEXTTERM(xx, INC(n2) DIVNUM(n2) INC(n2) DIVNUM(n2), precision);
} while (!SMALL_ENOUGH_RAT(thisterm, precision));
DESTROYTAYLOR();
}
void coshrat( PRAT *px, uint32_t radix, int32_t precision)
void coshrat(PRAT* px, uint32_t radix, int32_t precision)
{
PRAT tmpx= nullptr;
PRAT tmpx = nullptr;
(*px)->pp->sign = 1;
(*px)->pq->sign = 1;
if ( rat_ge( *px, rat_one, precision) )
{
DUPRAT(tmpx,*px);
if (rat_ge(*px, rat_one, precision))
{
DUPRAT(tmpx, *px);
exprat(px, radix, precision);
tmpx->pp->sign *= -1;
exprat(&tmpx, radix, precision);
addrat( px, tmpx, precision);
divrat( px, rat_two, precision);
destroyrat( tmpx );
}
addrat(px, tmpx, precision);
divrat(px, rat_two, precision);
destroyrat(tmpx);
}
else
{
_coshrat( px, radix, precision);
}
{
_coshrat(px, radix, precision);
}
// Since *px might be epsilon below 1 due to TRIMIT
// we need this trick here.
if ( rat_lt(*px, rat_one, precision) )
{
DUPRAT(*px,rat_one);
}
if (rat_lt(*px, rat_one, precision))
{
DUPRAT(*px, rat_one);
}
}
//-----------------------------------------------------------------------------
@@ -215,17 +211,16 @@ void coshrat( PRAT *px, uint32_t radix, int32_t precision)
//
//-----------------------------------------------------------------------------
void tanhrat( PRAT *px, uint32_t radix, int32_t precision)
void tanhrat(PRAT* px, uint32_t radix, int32_t precision)
{
PRAT ptmp= nullptr;
PRAT ptmp = nullptr;
DUPRAT(ptmp,*px);
DUPRAT(ptmp, *px);
sinhrat(px, radix, precision);
coshrat(&ptmp, radix, precision);
mulnumx(&((*px)->pp),ptmp->pq);
mulnumx(&((*px)->pq),ptmp->pp);
mulnumx(&((*px)->pp), ptmp->pq);
mulnumx(&((*px)->pq), ptmp->pp);
destroyrat(ptmp);
}

View File

@@ -1,16 +1,16 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
#include "pch.h"
#include <cassert>
#include <cmath>
#include <sstream>
#include <algorithm> // for std::sort
#include "Command.h"
#include "UnitConverter.h"
using namespace concurrency;
using namespace std;
using namespace UnitConversionManager;
static constexpr uint32_t EXPECTEDSERIALIZEDTOKENCOUNT = 7;
static constexpr uint32_t EXPECTEDSERIALIZEDCONVERSIONDATATOKENCOUNT = 3;
static constexpr uint32_t EXPECTEDSERIALIZEDCATEGORYTOKENCOUNT = 3;
static constexpr uint32_t EXPECTEDSERIALIZEDUNITTOKENCOUNT = 6;
static constexpr uint32_t EXPECTEDSTATEDATATOKENCOUNT = 5;
@@ -32,8 +32,8 @@ unordered_map<wstring, wchar_t> unquoteConversions;
/// Constructor, sets up all the variables and requires a configLoader
/// </summary>
/// <param name="dataLoader">An instance of the IConverterDataLoader interface which we use to read in category/unit names and conversion data</param>
UnitConverter::UnitConverter(_In_ const shared_ptr<IConverterDataLoader>& dataLoader) :
UnitConverter::UnitConverter(dataLoader, nullptr)
UnitConverter::UnitConverter(_In_ const shared_ptr<IConverterDataLoader>& dataLoader)
: UnitConverter::UnitConverter(dataLoader, nullptr)
{
}
@@ -63,7 +63,8 @@ UnitConverter::UnitConverter(_In_ const shared_ptr<IConverterDataLoader>& dataLo
unquoteConversions[L"{sc}"] = L';';
unquoteConversions[L"{lb}"] = LEFTESCAPECHAR;
unquoteConversions[L"{rb}"] = RIGHTESCAPECHAR;
Reset();
ClearValues();
ResetCategoriesAndRatios();
}
void UnitConverter::Initialize()
@@ -75,7 +76,7 @@ bool UnitConverter::CheckLoad()
{
if (m_categories.empty())
{
Reset();
ResetCategoriesAndRatios();
}
return !m_categories.empty();
}
@@ -152,7 +153,6 @@ void UnitConverter::SetCurrentUnitTypes(const Unit& fromType, const Unit& toType
Calculate();
UpdateCurrencySymbols();
UpdateViewModel();
}
/// <summary>
@@ -190,14 +190,14 @@ void UnitConverter::SwitchActive(const wstring& newValue)
}
}
wstring UnitConverter::CategoryToString(const Category& c, const wchar_t * delimiter)
wstring UnitConverter::CategoryToString(const Category& c, const wchar_t* delimiter)
{
wstringstream out(wstringstream::out);
out << Quote(std::to_wstring(c.id)) << delimiter << Quote(std::to_wstring(c.supportsNegative)) << delimiter << Quote(c.name) << delimiter;
return out.str();
}
vector<wstring> UnitConverter::StringToVector(const wstring& w, const wchar_t * delimiter, bool addRemainder)
vector<wstring> UnitConverter::StringToVector(const wstring& w, const wchar_t* delimiter, bool addRemainder)
{
size_t delimiterIndex = w.find(delimiter);
size_t startIndex = 0;
@@ -215,22 +215,12 @@ vector<wstring> UnitConverter::StringToVector(const wstring& w, const wchar_t *
}
return serializedTokens;
}
Category UnitConverter::StringToCategory(const wstring& w)
{
vector<wstring> tokenList = StringToVector(w, L";");
assert(tokenList.size() == EXPECTEDSERIALIZEDCATEGORYTOKENCOUNT);
Category serializedCategory;
serializedCategory.id = _wtoi(Unquote(tokenList[0]).c_str());
serializedCategory.supportsNegative = (tokenList[1].compare(L"1") == 0);
serializedCategory.name = Unquote(tokenList[2]);
return serializedCategory;
}
wstring UnitConverter::UnitToString(const Unit& u, const wchar_t * delimiter)
wstring UnitConverter::UnitToString(const Unit& u, const wchar_t* delimiter)
{
wstringstream out(wstringstream::out);
out << Quote(std::to_wstring(u.id)) << delimiter << Quote(u.name) << delimiter << Quote(u.abbreviation) << delimiter << std::to_wstring(u.isConversionSource) << delimiter << std::to_wstring(u.isConversionTarget) << delimiter << std::to_wstring(u.isWhimsical) << delimiter;
out << Quote(std::to_wstring(u.id)) << delimiter << Quote(u.name) << delimiter << Quote(u.abbreviation) << delimiter
<< std::to_wstring(u.isConversionSource) << delimiter << std::to_wstring(u.isConversionTarget) << delimiter << std::to_wstring(u.isWhimsical)
<< delimiter;
return out.str();
}
@@ -239,7 +229,7 @@ Unit UnitConverter::StringToUnit(const wstring& w)
vector<wstring> tokenList = StringToVector(w, L";");
assert(tokenList.size() == EXPECTEDSERIALIZEDUNITTOKENCOUNT);
Unit serializedUnit;
serializedUnit.id = _wtoi(Unquote(tokenList[0]).c_str());
serializedUnit.id = wcstol(Unquote(tokenList[0]).c_str(), nullptr, 10);
serializedUnit.name = Unquote(tokenList[1]);
serializedUnit.accessibleName = serializedUnit.name;
serializedUnit.abbreviation = Unquote(tokenList[2]);
@@ -249,146 +239,15 @@ Unit UnitConverter::StringToUnit(const wstring& w)
return serializedUnit;
}
ConversionData UnitConverter::StringToConversionData(const wstring& w)
Category UnitConverter::StringToCategory(const wstring& w)
{
vector<wstring> tokenList = StringToVector(w, L";");
assert(tokenList.size() == EXPECTEDSERIALIZEDCONVERSIONDATATOKENCOUNT);
ConversionData serializedConversionData;
serializedConversionData.ratio = stod(Unquote(tokenList[0]).c_str());
serializedConversionData.offset = stod(Unquote(tokenList[1]).c_str());
serializedConversionData.offsetFirst = (tokenList[2].compare(L"1") == 0);
return serializedConversionData;
}
wstring UnitConverter::ConversionDataToString(ConversionData d, const wchar_t * delimiter)
{
wstringstream out(wstringstream::out);
out.precision(32);
out << fixed << d.ratio;
wstring ratio = out.str();
out.str(L"");
out << fixed << d.offset;
wstring offset = out.str();
out.str(L"");
TrimString(ratio);
TrimString(offset);
out << Quote(ratio) << delimiter << Quote(offset) << delimiter << std::to_wstring(d.offsetFirst) << delimiter;
return out.str();
}
/// <summary>
/// Serializes the data in the converter and returns it as a string
/// </summary>
wstring UnitConverter::Serialize()
{
if (!CheckLoad())
{
return wstring();
}
wstringstream out(wstringstream::out);
const wchar_t * delimiter = L";";
out << UnitToString(m_fromType, delimiter) << "|";
out << UnitToString(m_toType, delimiter) << "|";
out << CategoryToString(m_currentCategory, delimiter) << "|";
out << std::to_wstring(m_currentHasDecimal) << delimiter << std::to_wstring(m_returnHasDecimal) << delimiter << std::to_wstring(m_switchedActive) << delimiter;
out << m_currentDisplay << delimiter << m_returnDisplay << delimiter << "|";
wstringstream categoryString(wstringstream::out);
wstringstream categoryToUnitString(wstringstream::out);
wstringstream unitToUnitToDoubleString(wstringstream::out);
for (const Category& c : m_categories)
{
categoryString << CategoryToString(c, delimiter) << ",";
}
for (const auto& cur : m_categoryToUnits)
{
categoryToUnitString << CategoryToString(cur.first, delimiter) << "[";
for (const Unit& u : cur.second)
{
categoryToUnitString << UnitToString(u, delimiter) << ",";
}
categoryToUnitString << "[" << "]";
}
for (const auto& cur : m_ratioMap)
{
unitToUnitToDoubleString << UnitToString(cur.first, delimiter) << "[";
for (const auto& curConversion : cur.second)
{
unitToUnitToDoubleString << UnitToString(curConversion.first, delimiter) << ":";
unitToUnitToDoubleString << ConversionDataToString(curConversion.second, delimiter) << ":,";
}
unitToUnitToDoubleString << "[" << "]";
}
out << categoryString.str() << "|";
out << categoryToUnitString.str() << "|";
out << unitToUnitToDoubleString.str() << "|";
wstring test = out.str();
return test;
}
/// <summary>
/// De-Serializes the data in the converter from a string
/// </summary>
/// <param name="serializedData">wstring holding the serialized data. If it does not have expected number of parameters, we will ignore it</param>
void UnitConverter::DeSerialize(const wstring& serializedData)
{
Reset();
if (serializedData.empty())
{
return;
}
vector<wstring> outerTokens = StringToVector(serializedData, L"|");
assert(outerTokens.size() == EXPECTEDSERIALIZEDTOKENCOUNT);
m_fromType = StringToUnit(outerTokens[0]);
m_toType = StringToUnit(outerTokens[1]);
m_currentCategory = StringToCategory(outerTokens[2]);
vector<wstring> stateDataTokens = StringToVector(outerTokens[3], L";");
assert(stateDataTokens.size() == EXPECTEDSTATEDATATOKENCOUNT);
m_currentHasDecimal = (stateDataTokens[0].compare(L"1") == 0);
m_returnHasDecimal = (stateDataTokens[1].compare(L"1") == 0);
m_switchedActive = (stateDataTokens[2].compare(L"1") == 0);
m_currentDisplay = stateDataTokens[3];
m_returnDisplay = stateDataTokens[4];
vector<wstring> categoryListTokens = StringToVector(outerTokens[4], L",");
for (wstring token : categoryListTokens)
{
m_categories.push_back(StringToCategory(token));
}
vector<wstring> unitVectorTokens = StringToVector(outerTokens[5], L"]");
for (wstring unitVector : unitVectorTokens)
{
vector<wstring> mapcomponents = StringToVector(unitVector, L"[");
assert(mapcomponents.size() == EXPECTEDMAPCOMPONENTTOKENCOUNT);
Category key = StringToCategory(mapcomponents[0]);
vector<wstring> units = StringToVector(mapcomponents[1], L",");
for (wstring unit : units)
{
m_categoryToUnits[key].push_back(StringToUnit(unit));
}
}
vector<wstring> ratioMapTokens = StringToVector(outerTokens[6], L"]");
for (wstring token : ratioMapTokens)
{
vector<wstring> ratioMapComponentTokens = StringToVector(token, L"[");
assert(ratioMapComponentTokens.size() == EXPECTEDMAPCOMPONENTTOKENCOUNT);
Unit key = StringToUnit(ratioMapComponentTokens[0]);
vector<wstring> ratioMapList = StringToVector(ratioMapComponentTokens[1], L",");
for (wstring subtoken : ratioMapList)
{
vector<wstring> ratioMapSubComponentTokens = StringToVector(subtoken, L":");
assert(ratioMapSubComponentTokens.size() == EXPECTEDMAPCOMPONENTTOKENCOUNT);
Unit subkey = StringToUnit(ratioMapSubComponentTokens[0]);
ConversionData conversion = StringToConversionData(ratioMapSubComponentTokens[1]);
m_ratioMap[key][subkey] = conversion;
}
}
UpdateViewModel();
assert(tokenList.size() == EXPECTEDSERIALIZEDCATEGORYTOKENCOUNT);
Category serializedCategory;
serializedCategory.id = wcstol(Unquote(tokenList[0]).c_str(), nullptr, 10);
serializedCategory.supportsNegative = (tokenList[1].compare(L"1") == 0);
serializedCategory.name = Unquote(tokenList[2]);
return serializedCategory;
}
/// <summary>
@@ -403,11 +262,28 @@ void UnitConverter::RestoreUserPreferences(const wstring& userPreferences)
}
vector<wstring> outerTokens = StringToVector(userPreferences, L"|");
if (outerTokens.size() == 3)
if (outerTokens.size() != 3)
{
m_fromType = StringToUnit(outerTokens[0]);
m_toType = StringToUnit(outerTokens[1]);
m_currentCategory = StringToCategory(outerTokens[2]);
return;
}
auto fromType = StringToUnit(outerTokens[0]);
auto toType = StringToUnit(outerTokens[1]);
m_currentCategory = StringToCategory(outerTokens[2]);
// Only restore from the saved units if they are valid in the current available units.
auto itr = m_categoryToUnits.find(m_currentCategory);
if (itr != m_categoryToUnits.end())
{
const auto& curUnits = itr->second;
if (find(curUnits.begin(), curUnits.end(), fromType) != curUnits.end())
{
m_fromType = fromType;
}
if (find(curUnits.begin(), curUnits.end(), toType) != curUnits.end())
{
m_toType = toType;
}
}
}
@@ -417,7 +293,7 @@ void UnitConverter::RestoreUserPreferences(const wstring& userPreferences)
wstring UnitConverter::SaveUserPreferences()
{
wstringstream out(wstringstream::out);
const wchar_t * delimiter = L";";
const wchar_t* delimiter = L";";
out << UnitToString(m_fromType, delimiter) << "|";
out << UnitToString(m_toType, delimiter) << "|";
@@ -436,7 +312,7 @@ wstring UnitConverter::Quote(const wstring& s)
// Iterate over the delimiter characters we need to quote
wstring::const_iterator cursor = s.begin();
while(cursor != s.end())
while (cursor != s.end())
{
if (quoteConversions.find(*cursor) != quoteConversions.end())
{
@@ -460,9 +336,9 @@ wstring UnitConverter::Unquote(const wstring& s)
wstringstream quotedSubString(wstringstream::out);
wstringstream unquotedString(wstringstream::out);
wstring::const_iterator cursor = s.begin();
while(cursor != s.end())
while (cursor != s.end())
{
if(*cursor == LEFTESCAPECHAR)
if (*cursor == LEFTESCAPECHAR)
{
quotedSubString.str(L"");
while (cursor != s.end() && *cursor != RIGHTESCAPECHAR)
@@ -508,7 +384,8 @@ void UnitConverter::SendCommand(Command command)
clearFront = true;
}
bool clearBack = false;
if ((m_currentHasDecimal && m_currentDisplay.size() - 1 >= MAXIMUMDIGITSALLOWED) || (!m_currentHasDecimal && m_currentDisplay.size() >= MAXIMUMDIGITSALLOWED))
if ((m_currentHasDecimal && m_currentDisplay.size() - 1 >= MAXIMUMDIGITSALLOWED)
|| (!m_currentHasDecimal && m_currentDisplay.size() >= MAXIMUMDIGITSALLOWED))
{
clearBack = true;
}
@@ -615,14 +492,13 @@ void UnitConverter::SendCommand(Command command)
clearFront = false;
clearBack = false;
ClearValues();
Reset();
ResetCategoriesAndRatios();
break;
default:
break;
}
if (clearFront)
{
m_currentDisplay.erase(0, 1);
@@ -634,8 +510,6 @@ void UnitConverter::SendCommand(Command command)
}
Calculate();
UpdateViewModel();
}
/// <summary>
@@ -662,21 +536,23 @@ void UnitConverter::SetViewModelCurrencyCallback(_In_ const shared_ptr<IViewMode
}
}
task<pair<bool, wstring>> UnitConverter::RefreshCurrencyRatios()
future<pair<bool, wstring>> UnitConverter::RefreshCurrencyRatios()
{
shared_ptr<ICurrencyConverterDataLoader> currencyDataLoader = GetCurrencyConverterDataLoader();
return create_task([this, currencyDataLoader]()
future<bool> loadDataResult;
if (currencyDataLoader != nullptr)
{
if (currencyDataLoader != nullptr)
{
return currencyDataLoader->TryLoadDataFromWebOverrideAsync();
}
else
{
return task_from_result(false);
}
}).then([this, currencyDataLoader](bool didLoad)
loadDataResult = currencyDataLoader->TryLoadDataFromWebOverrideAsync();
}
else
{
loadDataResult = async([] { return false; });
}
shared_future<bool> sharedLoadResult = loadDataResult.share();
return async([this, currencyDataLoader, sharedLoadResult]() {
sharedLoadResult.wait();
bool didLoad = sharedLoadResult.get();
wstring timestamp = L"";
if (currencyDataLoader != nullptr)
{
@@ -684,7 +560,7 @@ task<pair<bool, wstring>> UnitConverter::RefreshCurrencyRatios()
}
return make_pair(didLoad, timestamp);
}, task_continuation_context::use_default());
});
}
shared_ptr<ICurrencyConverterDataLoader> UnitConverter::GetCurrencyConverterDataLoader()
@@ -733,7 +609,7 @@ vector<tuple<wstring, Unit>> UnitConverter::CalculateSuggested()
newEntry.magnitude = log10(convertedValue);
newEntry.value = convertedValue;
newEntry.type = cur.first;
if(newEntry.type.isWhimsical == false)
if (newEntry.type.isWhimsical == false)
intermediateVector.push_back(newEntry);
else
intermediateWhimsicalVector.push_back(newEntry);
@@ -741,9 +617,7 @@ vector<tuple<wstring, Unit>> UnitConverter::CalculateSuggested()
}
// Sort the resulting list by absolute magnitude, breaking ties by choosing the positive value
sort(intermediateVector.begin(), intermediateVector.end(), []
(SuggestedValueIntermediate first, SuggestedValueIntermediate second)
{
sort(intermediateVector.begin(), intermediateVector.end(), [](SuggestedValueIntermediate first, SuggestedValueIntermediate second) {
if (abs(first.magnitude) == abs(second.magnitude))
{
return first.magnitude > second.magnitude;
@@ -764,7 +638,7 @@ vector<tuple<wstring, Unit>> UnitConverter::CalculateSuggested()
}
else if (abs(entry.value) < 1000)
{
roundedString = RoundSignificant(entry.value, 1);
roundedString = RoundSignificant(entry.value, 1);
}
else
{
@@ -779,9 +653,7 @@ vector<tuple<wstring, Unit>> UnitConverter::CalculateSuggested()
// The Whimsicals are determined differently
// Sort the resulting list by absolute magnitude, breaking ties by choosing the positive value
sort(intermediateWhimsicalVector.begin(), intermediateWhimsicalVector.end(), []
(SuggestedValueIntermediate first, SuggestedValueIntermediate second)
{
sort(intermediateWhimsicalVector.begin(), intermediateWhimsicalVector.end(), [](SuggestedValueIntermediate first, SuggestedValueIntermediate second) {
if (abs(first.magnitude) == abs(second.magnitude))
{
return first.magnitude > second.magnitude;
@@ -824,19 +696,16 @@ vector<tuple<wstring, Unit>> UnitConverter::CalculateSuggested()
returnVector.push_back(whimsicalReturnVector.at(0));
}
//
return returnVector;
}
/// <summary>
/// Resets the converter to its initial state
/// Resets categories and ratios
/// </summary>
void UnitConverter::Reset()
void UnitConverter::ResetCategoriesAndRatios()
{
m_categories = m_dataLoader->LoadOrderedCategories();
ClearValues();
m_switchedActive = false;
if (m_categories.empty())
@@ -881,7 +750,6 @@ void UnitConverter::Reset()
}
InitializeSelectedUnits();
Calculate();
}
/// <summary>
@@ -907,7 +775,6 @@ shared_ptr<IConverterDataLoader> UnitConverter::GetDataLoaderForCategory(const C
/// </summary>
void UnitConverter::InitializeSelectedUnits()
{
if (m_categoryToUnits.empty())
{
return;
@@ -972,11 +839,21 @@ bool UnitConverter::AnyUnitIsEmpty()
/// </summary>
void UnitConverter::Calculate()
{
unordered_map<Unit, ConversionData, UnitHash> conversionTable = m_ratioMap[m_fromType];
double returnValue = stod(m_currentDisplay);
if (AnyUnitIsEmpty() || (conversionTable[m_toType].ratio == 1.0 && conversionTable[m_toType].offset == 0.0))
if (AnyUnitIsEmpty())
{
m_returnDisplay = m_currentDisplay;
m_returnHasDecimal = m_currentHasDecimal;
TrimString(m_returnDisplay);
UpdateViewModel();
return;
}
unordered_map<Unit, ConversionData, UnitHash> conversionTable = m_ratioMap[m_fromType];
double returnValue = stod(m_currentDisplay);
if (conversionTable[m_toType].ratio == 1.0 && conversionTable[m_toType].offset == 0.0)
{
m_returnDisplay = m_currentDisplay;
m_returnHasDecimal = m_currentHasDecimal;
TrimString(m_returnDisplay);
}
else
@@ -1015,9 +892,9 @@ void UnitConverter::Calculate()
m_returnDisplay = returnString;
TrimString(m_returnDisplay);
}
m_returnHasDecimal = (m_returnDisplay.find(L'.') != m_returnDisplay.npos);
}
m_returnHasDecimal = (m_returnDisplay.find(L'.') != m_returnDisplay.npos);
UpdateViewModel();
}
/// <summary>
@@ -1032,7 +909,7 @@ void UnitConverter::TrimString(wstring& returnString)
}
wstring::iterator iter;
for (iter = returnString.end() - 1; ;iter--)
for (iter = returnString.end() - 1;; iter--)
{
if (*iter != L'0')
{
@@ -1040,9 +917,9 @@ void UnitConverter::TrimString(wstring& returnString)
break;
}
}
if (*(returnString.end()-1) == L'.')
if (*(returnString.end() - 1) == L'.')
{
returnString.erase(returnString.end()-1, returnString.end());
returnString.erase(returnString.end() - 1, returnString.end());
}
}

View File

@@ -1,22 +1,47 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
#pragma once
#include <vector>
#include <unordered_map>
#include <future>
#include "sal_cross_platform.h" // for SAL
#include <memory> // for std::shared_ptr
namespace UnitConversionManager
{
enum class Command;
struct Unit
{
Unit(){}
Unit()
{
}
Unit(int id, std::wstring name, std::wstring abbreviation, bool isConversionSource, bool isConversionTarget, bool isWhimsical)
: id(id), name(name), accessibleName(name), abbreviation(abbreviation), isConversionSource(isConversionSource), isConversionTarget(isConversionTarget), isWhimsical(isWhimsical)
: id(id)
, name(name)
, accessibleName(name)
, abbreviation(abbreviation)
, isConversionSource(isConversionSource)
, isConversionTarget(isConversionTarget)
, isWhimsical(isWhimsical)
{
}
Unit(int id, std::wstring currencyName, std::wstring countryName, std::wstring abbreviation, bool isRtlLanguage, bool isConversionSource, bool isConversionTarget)
: id(id), abbreviation(abbreviation), isConversionSource(isConversionSource), isConversionTarget(isConversionTarget), isWhimsical(false)
Unit(
int id,
std::wstring currencyName,
std::wstring countryName,
std::wstring abbreviation,
bool isRtlLanguage,
bool isConversionSource,
bool isConversionTarget)
: id(id)
, abbreviation(abbreviation)
, isConversionSource(isConversionSource)
, isConversionTarget(isConversionTarget)
, isWhimsical(false)
{
std::wstring nameValue1 = isRtlLanguage ? currencyName : countryName;
std::wstring nameValue2 = isRtlLanguage ? countryName : currencyName;
@@ -25,7 +50,9 @@ namespace UnitConversionManager
accessibleName = nameValue1 + L" " + nameValue2;
}
virtual ~Unit() {}
virtual ~Unit()
{
}
int id;
std::wstring name;
@@ -35,12 +62,12 @@ namespace UnitConversionManager
bool isConversionTarget;
bool isWhimsical;
bool operator!= (const Unit& that) const
bool operator!=(const Unit& that) const
{
return that.id != id;
}
bool operator== (const Unit& that) const
bool operator==(const Unit& that) const
{
return that.id == id;
}
@@ -55,9 +82,14 @@ namespace UnitConversionManager
struct Category
{
Category(){}
Category()
{
}
Category(int id, std::wstring name, bool supportsNegative) : id(id), name(name), supportsNegative(supportsNegative)
Category(int id, std::wstring name, bool supportsNegative)
: id(id)
, name(name)
, supportsNegative(supportsNegative)
{
}
@@ -65,12 +97,12 @@ namespace UnitConversionManager
std::wstring name;
bool supportsNegative;
bool operator!= (const Category& that) const
bool operator!=(const Category& that) const
{
return that.id != id;
}
bool operator== (const Category& that) const
bool operator==(const Category& that) const
{
return that.id == id;
}
@@ -79,7 +111,8 @@ namespace UnitConversionManager
class UnitHash
{
public:
size_t operator() (const Unit & x) const {
size_t operator()(const Unit& x) const
{
return x.id;
}
};
@@ -87,7 +120,8 @@ namespace UnitConversionManager
class CategoryHash
{
public:
size_t operator() (const Category & x) const {
size_t operator()(const Category& x) const
{
return x.id;
}
};
@@ -101,12 +135,19 @@ namespace UnitConversionManager
struct ConversionData
{
ConversionData(){}
ConversionData(double ratio, double offset, bool offsetFirst) : ratio(ratio), offset(offset), offsetFirst(offsetFirst)
ConversionData()
{
}
ConversionData(double ratio, double offset, bool offsetFirst)
: ratio(ratio)
, offset(offset)
, offsetFirst(offsetFirst)
{
}
virtual ~ConversionData() {}
virtual ~ConversionData()
{
}
double ratio;
double offset;
@@ -130,13 +171,18 @@ namespace UnitConversionManager
};
typedef std::tuple<std::vector<UnitConversionManager::Unit>, UnitConversionManager::Unit, UnitConversionManager::Unit> CategorySelectionInitializer;
typedef std::unordered_map<UnitConversionManager::Unit, std::unordered_map<UnitConversionManager::Unit, UnitConversionManager::ConversionData, UnitConversionManager::UnitHash>, UnitConversionManager::UnitHash> UnitToUnitToConversionDataMap;
typedef std::unordered_map<UnitConversionManager::Category, std::vector<UnitConversionManager::Unit>, UnitConversionManager::CategoryHash> CategoryToUnitVectorMap;
typedef std::unordered_map<
UnitConversionManager::Unit,
std::unordered_map<UnitConversionManager::Unit, UnitConversionManager::ConversionData, UnitConversionManager::UnitHash>,
UnitConversionManager::UnitHash>
UnitToUnitToConversionDataMap;
typedef std::unordered_map<UnitConversionManager::Category, std::vector<UnitConversionManager::Unit>, UnitConversionManager::CategoryHash>
CategoryToUnitVectorMap;
class IViewModelCurrencyCallback
{
public:
virtual ~IViewModelCurrencyCallback() { };
virtual ~IViewModelCurrencyCallback(){};
virtual void CurrencyDataLoadFinished(bool didLoad) = 0;
virtual void CurrencySymbolsCallback(_In_ const std::wstring& fromSymbol, _In_ const std::wstring& toSymbol) = 0;
virtual void CurrencyRatiosCallback(_In_ const std::wstring& ratioEquality, _In_ const std::wstring& accRatioEquality) = 0;
@@ -147,8 +193,8 @@ namespace UnitConversionManager
class IConverterDataLoader
{
public:
virtual ~IConverterDataLoader() { };
virtual void LoadData() = 0; // prepare data if necessary before calling other functions
virtual ~IConverterDataLoader(){};
virtual void LoadData() = 0; // prepare data if necessary before calling other functions
virtual std::vector<Category> LoadOrderedCategories() = 0;
virtual std::vector<Unit> LoadOrderedUnits(const Category& c) = 0;
virtual std::unordered_map<Unit, ConversionData, UnitHash> LoadOrderedRatios(const Unit& u) = 0;
@@ -159,19 +205,21 @@ namespace UnitConversionManager
{
public:
virtual void SetViewModelCallback(const std::shared_ptr<UnitConversionManager::IViewModelCurrencyCallback>& callback) = 0;
virtual std::pair<std::wstring, std::wstring> GetCurrencySymbols(_In_ const UnitConversionManager::Unit& unit1, _In_ const UnitConversionManager::Unit& unit2) = 0;
virtual std::pair<std::wstring, std::wstring> GetCurrencyRatioEquality(_In_ const UnitConversionManager::Unit& unit1, _In_ const UnitConversionManager::Unit& unit2) = 0;
virtual std::pair<std::wstring, std::wstring>
GetCurrencySymbols(_In_ const UnitConversionManager::Unit& unit1, _In_ const UnitConversionManager::Unit& unit2) = 0;
virtual std::pair<std::wstring, std::wstring>
GetCurrencyRatioEquality(_In_ const UnitConversionManager::Unit& unit1, _In_ const UnitConversionManager::Unit& unit2) = 0;
virtual std::wstring GetCurrencyTimestamp() = 0;
virtual concurrency::task<bool> TryLoadDataFromCacheAsync() = 0;
virtual concurrency::task<bool> TryLoadDataFromWebAsync() = 0;
virtual concurrency::task<bool> TryLoadDataFromWebOverrideAsync() = 0;
virtual std::future<bool> TryLoadDataFromCacheAsync() = 0;
virtual std::future<bool> TryLoadDataFromWebAsync() = 0;
virtual std::future<bool> TryLoadDataFromWebOverrideAsync() = 0;
};
class IUnitConverterVMCallback
{
public:
virtual ~IUnitConverterVMCallback() { };
virtual ~IUnitConverterVMCallback(){};
virtual void DisplayCallback(const std::wstring& from, const std::wstring& to) = 0;
virtual void SuggestedValueCallback(const std::vector<std::tuple<std::wstring, Unit>>& suggestedValues) = 0;
virtual void MaxDigitsReached() = 0;
@@ -180,21 +228,23 @@ namespace UnitConversionManager
class IUnitConverter
{
public:
virtual ~IUnitConverter() { }
virtual void Initialize() = 0; // Use to initialize first time, use deserialize instead to rehydrate
virtual ~IUnitConverter()
{
}
virtual void Initialize() = 0; // Use to initialize first time, use deserialize instead to rehydrate
virtual std::vector<Category> GetCategories() = 0;
virtual CategorySelectionInitializer SetCurrentCategory(const Category& input) = 0;
virtual Category GetCurrentCategory() = 0;
virtual void SetCurrentUnitTypes(const Unit& fromType, const Unit& toType) = 0;
virtual void SwitchActive(const std::wstring& newValue) = 0;
virtual std::wstring Serialize() = 0;
virtual void DeSerialize(const std::wstring& serializedData) = 0;
virtual std::wstring SaveUserPreferences() = 0;
virtual void RestoreUserPreferences(_In_ const std::wstring& userPreferences) = 0;
virtual void SendCommand(Command command) = 0;
virtual void SetViewModelCallback(_In_ const std::shared_ptr<IUnitConverterVMCallback>& newCallback) = 0;
virtual void SetViewModelCurrencyCallback(_In_ const std::shared_ptr<IViewModelCurrencyCallback>& newCallback) = 0;
virtual concurrency::task<std::pair<bool, std::wstring>> RefreshCurrencyRatios() = 0;
virtual std::future<std::pair<bool, std::wstring>> RefreshCurrencyRatios() = 0;
virtual void Calculate() = 0;
virtual void ResetCategoriesAndRatios() = 0;
};
class UnitConverter : public IUnitConverter, public std::enable_shared_from_this<UnitConverter>
@@ -210,17 +260,17 @@ namespace UnitConversionManager
Category GetCurrentCategory() override;
void SetCurrentUnitTypes(const Unit& fromType, const Unit& toType) override;
void SwitchActive(const std::wstring& newValue) override;
std::wstring Serialize() override;
void DeSerialize(const std::wstring& serializedData) override;
std::wstring SaveUserPreferences() override;
void RestoreUserPreferences(const std::wstring& userPreference) override;
void SendCommand(Command command) override;
void SetViewModelCallback(_In_ const std::shared_ptr<IUnitConverterVMCallback>& newCallback) override;
void SetViewModelCurrencyCallback(_In_ const std::shared_ptr<IViewModelCurrencyCallback>& newCallback) override;
concurrency::task<std::pair<bool, std::wstring>> RefreshCurrencyRatios() override;
std::future<std::pair<bool, std::wstring>> RefreshCurrencyRatios() override;
void Calculate() override;
void ResetCategoriesAndRatios() override;
// IUnitConverter
static std::vector<std::wstring> StringToVector(const std::wstring& w, const wchar_t * delimiter, bool addRemainder = false);
static std::vector<std::wstring> StringToVector(const std::wstring& w, const wchar_t* delimiter, bool addRemainder = false);
static std::wstring Quote(const std::wstring& s);
static std::wstring Unquote(const std::wstring& s);
@@ -228,18 +278,14 @@ namespace UnitConversionManager
bool CheckLoad();
double Convert(double value, ConversionData conversionData);
std::vector<std::tuple<std::wstring, Unit>> CalculateSuggested();
void Reset();
void ClearValues();
void Calculate();
void TrimString(std::wstring& input);
void InitializeSelectedUnits();
std::wstring RoundSignificant(double num, int numSignificant);
Category StringToCategory(const std::wstring& w);
std::wstring CategoryToString(const Category& c, const wchar_t * delimiter);
std::wstring UnitToString(const Unit& u, const wchar_t * delimiter);
std::wstring CategoryToString(const Category& c, const wchar_t* delimiter);
std::wstring UnitToString(const Unit& u, const wchar_t* delimiter);
Unit StringToUnit(const std::wstring& w);
ConversionData StringToConversionData(const std::wstring& w);
std::wstring ConversionDataToString(ConversionData d, const wchar_t * delimiter);
void UpdateCurrencySymbols();
void UpdateViewModel();
bool AnyUnitIsEmpty();

View File

@@ -1,4 +1,6 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
#include "pch.h"
// Intentionally do not include the pch.h here. For projects that don't
// use precompiled headers, including the header here would force unnecessary compilation.
// The pch will be included through forced include.

View File

@@ -3,27 +3,20 @@
#pragma once
#ifndef WIN32_LEAN_AND_MEAN
#define WIN32_LEAN_AND_MEAN
#endif
// The CalcManager project should be able to be compiled with or without a precompiled header
// in - order to support other toolchains besides MSVC. When adding new system headers, make sure
// that the relevant source file includes all headers it needs, but then also add the system headers
// here so that MSVC users see the performance benefit.
// Windows headers define min/max macros.
// Disable it for project code.
#define NOMINMAX
#include <assert.h>
#include <windows.h>
#include <winerror.h>
#include <sstream>
#include <iostream>
#include <iterator>
#include <string>
#include <memory>
#include <vector>
#include <limits>
#include <list>
#include <regex>
#include <unordered_map>
#include <intsafe.h>
#include <algorithm>
#include <array>
#include <ppltasks.h>
#include <cassert>
#include <intsafe.h>
#include <list>
#include <future>
#include <regex>
#include <sstream>
#include <string>
#include <unordered_map>
#include <vector>
#include <winerror.h>

View File

@@ -0,0 +1,19 @@
#pragma once
#if defined(_WIN32) && defined(_MSC_VER)
#include <sal.h>
#else
// Empty macro definitions for source annotations
#define _In_opt_
#define _Out_opt_
#define _In_
#define _Out_
#define _Inout_
#define __in_opt
#define _Frees_ptr_opt_
#endif

View File

@@ -1,11 +0,0 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
#pragma once
// Including SDKDDKVer.h defines the highest available Windows platform.
// If you wish to build your application for a previous Windows platform, include WinSDKVer.h and
// set the _WIN32_WINNT macro to the platform you wish to support before including SDKDDKVer.h.
#include <SDKDDKVer.h>

View File

@@ -0,0 +1,25 @@
#pragma once
#if defined(_WIN32) && defined(_MSC_VER)
#include <winerror.h>
#else
#include "Ratpack/CalcErr.h"
#define E_ACCESSDENIED 0x80070005
#define E_FAIL 0x80004005
#define E_INVALIDARG 0x80070057
#define E_OUTOFMEMORY 0x8007000E
#define E_POINTER 0x80004003
#define E_UNEXPECTED 0x8000FFFF
#define E_BOUNDS 0x8000000B
#define S_OK 0x0
#define S_FALSE 0x1
#define SUCCEEDED(hr) (((ResultCode)(hr)) >= 0)
#define FAILED(hr) (((ResultCode)(hr)) < 0)
#define SCODE_CODE(sc) ((sc) & 0xFFFF)
#endif