Apply spell check (#41)

This commit is contained in:
Matt Cooley
2019-02-26 20:41:04 -08:00
committed by GitHub
parent 81a6f59430
commit 28f982a6e1
41 changed files with 131 additions and 131 deletions

View File

@@ -1,4 +1,4 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
// CalcErr.h
@@ -6,7 +6,7 @@
// Defines the error codes thrown by ratpak and caught by Calculator
//
//
// Ratpak errors are 32 bit values layed out as follows:
// Ratpak errors are 32 bit values laid out as follows:
//
// 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
// 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
@@ -31,8 +31,8 @@
//
// Code - is the actual error code
//
// This format is based losely on an OLE HRESULT and is compatible with the
// SUCCEEDED and FAILED marcos as well as the HRESULT_CODE macro
// This format is based loosely on an OLE HRESULT and is compatible with the
// SUCCEEDED and FAILED macros as well as the HRESULT_CODE macro
// CALC_E_DIVIDEBYZERO
//

View File

@@ -1,4 +1,4 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
//-----------------------------------------------------------------------------
@@ -42,7 +42,7 @@ void __inline mulnumx( PNUMBER *pa, PNUMBER b )
// If b is not one we multiply
if ( (*pa)->cdigit > 1 || (*pa)->mant[0] != 1 || (*pa)->exp != 0 )
{
// pa and b are both nonone.
// pa and b are both non-one.
_mulnumx( pa, b );
}
else
@@ -71,7 +71,7 @@ void __inline mulnumx( PNUMBER *pa, PNUMBER b )
//
// DESCRIPTION: Does the number equivalent of *pa *= b.
// Assumes the base is BASEX of both numbers. This algorithm is the
// same one you learned in gradeschool, except the base isn't 10 it's
// same one you learned in grade school, except the base isn't 10 it's
// BASEX.
//
//----------------------------------------------------------------------------
@@ -148,7 +148,7 @@ void _mulnumx( PNUMBER *pa, PNUMBER b )
}
}
// prevent different kinds of zeros, by stripping leading duplicate zeroes.
// prevent different kinds of zeros, by stripping leading duplicate zeros.
// digits are in order of increasing significance.
while ( c->cdigit > 1 && c->mant[c->cdigit-1] == 0 )
{
@@ -342,7 +342,7 @@ void _divnumx( PNUMBER *pa, PNUMBER b, int32_t precision)
if ( !cdigits )
{
// A zero, make sure no wierd exponents creep in
// A zero, make sure no weird exponents creep in
c->exp = 0;
c->cdigit = 1;
}
@@ -351,7 +351,7 @@ void _divnumx( PNUMBER *pa, PNUMBER b, int32_t precision)
c->cdigit = cdigits;
c->exp -= cdigits;
// prevent different kinds of zeros, by stripping leading duplicate
// zeroes. digits are in order of increasing significance.
// zeros. digits are in order of increasing significance.
while ( c->cdigit > 1 && c->mant[c->cdigit-1] == 0 )
{
c->cdigit--;

View File

@@ -33,7 +33,7 @@ long g_ratio; // int(log(2L^BASEXPWR)/log(radix))
// Default decimal separator
wchar_t g_decimalSeparator = L'.';
// Used to strip trailing zeroes, and prevent combinatorial explosions
// Used to strip trailing zeros, and prevent combinatorial explosions
bool stripzeroesnum(_Inout_ PNUMBER pnum, long starting);
void SetDecimalSeparator(wchar_t decimalSeparator)
@@ -121,7 +121,7 @@ void _destroyrat( _In_ PRAT prat )
//
// RETURN: pointer to a number
//
// DESCRIPTION: allocates and zeroes out number type.
// DESCRIPTION: allocates and zeros out number type.
//
//-----------------------------------------------------------------------------
@@ -480,7 +480,7 @@ PRAT StringToRat(bool mantissaIsNegative, wstring_view mantissa, bool exponentIs
// ZR '0'
// NZ '1'..'9' 'A'..'Z' 'a'..'z' '@' '_'
// SG '+' '-'
// EX 'e' '^' e is used for radix 10, ^ for all other radixs.
// EX 'e' '^' e is used for radix 10, ^ for all other radixes.
//
//-----------------------------------------------------------------------------
static constexpr uint8_t DP = 0;
@@ -911,8 +911,8 @@ unsigned long rattoUlong( _In_ PRAT prat, uint32_t radix, int32_t precision)
// DESCRIPTION: returns the 64 bit (irrespective of which processor this is running in) representation of the
// number input. Assumes that the number is in the internal
// base. Can throw exception if the number exceeds 2^64
// Implementation by getting the HI & LO 32 bit words and concating them, as the
// internal base choosen happens to be 2^32, this is easier.
// Implementation by getting the HI & LO 32 bit words and concatenating them, as the
// internal base chosen happens to be 2^32, this is easier.
//-----------------------------------------------------------------------------
ULONGLONG rattoUlonglong( _In_ PRAT prat, uint32_t radix, int32_t precision)
@@ -981,7 +981,7 @@ long numtolong( _In_ PNUMBER pnum, uint32_t radix )
//
// RETURN: true if stripping done, modifies number in place.
//
// DESCRIPTION: Strips off trailing zeroes.
// DESCRIPTION: Strips off trailing zeros.
//
//-----------------------------------------------------------------------------
@@ -1001,7 +1001,7 @@ bool stripzeroesnum(_Inout_ PNUMBER pnum, long starting)
cdigits = starting;
}
// Check we haven't gone too far, and we are still looking at zeroes.
// Check we haven't gone too far, and we are still looking at zeros.
while ( ( cdigits > 0 ) && !(*pmant) )
{
// move to next significant digit and keep track of digits we can
@@ -1011,7 +1011,7 @@ bool stripzeroesnum(_Inout_ PNUMBER pnum, long starting)
fstrip = true;
}
// If there are zeroes to remove.
// If there are zeros to remove.
if ( fstrip )
{
// Remove them.
@@ -1061,7 +1061,7 @@ wstring NumberToString(_Inout_ PNUMBER& pnum, int format, uint32_t radix, int32_
// 10 for maximum exponent size.
int cchNum = (precision + 16);
// If there is a chance a round has to occour, round.
// If there is a chance a round has to occur, round.
// - if number is zero no rounding
// - if number of digits is less than the maximum output no rounding
PNUMBER round = nullptr;
@@ -1087,7 +1087,7 @@ wstring NumberToString(_Inout_ PNUMBER& pnum, int format, uint32_t radix, int32_
if (format == FMT_FLOAT)
{
// Figure out if the exponent will fill more space than the nonexponent field.
// Figure out if the exponent will fill more space than the non-exponent field.
if ((length - exponent > precision) || (exponent > precision + 3))
{
if (exponent >= -MAX_ZEROS_AFTER_DECIMAL)
@@ -1097,15 +1097,15 @@ wstring NumberToString(_Inout_ PNUMBER& pnum, int format, uint32_t radix, int32_
}
else
{
// Case where too many zeroes are to the right or left of the
// Case where too many zeros are to the right or left of the
// decimal pt. And we are forced to switch to scientific form.
format = FMT_SCIENTIFIC;
}
}
else if (length + abs(exponent) < precision && round)
{
// Minimum loss of precision occours with listing leading zeros
// if we need to make room for zeroes sacrifice some digits.
// Minimum loss of precision occurs with listing leading zeros
// if we need to make room for zeros sacrifice some digits.
round->exp -= exponent;
}
}
@@ -1118,7 +1118,7 @@ wstring NumberToString(_Inout_ PNUMBER& pnum, int format, uint32_t radix, int32_
if (stripzeroesnum(pnum, offset))
{
// WARNING: nesting/recursion, too much has been changed, need to
// refigure format.
// re-figure format.
return NumberToString(pnum, oldFormat, radix, precision);
}
}
@@ -1165,7 +1165,7 @@ wstring NumberToString(_Inout_ PNUMBER& pnum, int format, uint32_t radix, int32_
// Begin building the result string
wstringstream resultStream{};
// Make sure negative zeroes aren't allowed.
// Make sure negative zeros aren't allowed.
if ((pnum->sign == -1) && (length > 0))
{
resultStream << L'-';
@@ -1399,7 +1399,7 @@ PNUMBER longfactnum(long inlong, uint32_t radix)
// ARGUMENTS:
// long integer to factorialize.
// long integer representing base of answer.
// unsignd long integer for radix
// unsigned long integer for radix
//
// RETURN: Factorial of input in base PNUMBER form.
//

View File

@@ -1,4 +1,4 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
//-----------------------------------------------------------------------------
@@ -235,7 +235,7 @@ void log10rat( PRAT *px, int32_t precision)
}
//
// return if the given x is even number. The assumption here is its numberator is 1 and we are testing the numerator is
// return if the given x is even number. The assumption here is its numerator is 1 and we are testing the numerator is
// even or not
bool IsEven(PRAT x, uint32_t radix, int32_t precision)
{
@@ -291,7 +291,7 @@ void powrat(PRAT *px, PRAT y, uint32_t radix, int32_t precision)
catch (...)
{
// If calculating the power using numerator/denominator
// failed, fallback to the less accurate method of
// failed, fall back to the less accurate method of
// passing in the original y
powratcomp(px, y, radix, precision);
}

View File

@@ -1,4 +1,4 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
//-----------------------------------------------------------------------------
@@ -150,7 +150,7 @@ void _addnum( PNUMBER *pa, PNUMBER b, uint32_t radix)
}
else
{
// In this particular case an overflow or underflow has occoured
// In this particular case an overflow or underflow has occurred
// and all the digits need to be complemented, at one time an
// attempt to handle this above was made, it turned out to be much
// slower on average.
@@ -167,7 +167,7 @@ void _addnum( PNUMBER *pa, PNUMBER b, uint32_t radix)
}
}
// Remove leading zeroes, remember digits are in order of
// Remove leading zeros, remember digits are in order of
// increasing significance. i.e. 100 would be 0,0,1
while ( c->cdigit > 1 && *(--pchc) == 0 )
{
@@ -188,7 +188,7 @@ void _addnum( PNUMBER *pa, PNUMBER b, uint32_t radix)
//
// DESCRIPTION: Does the number equivalent of *pa *= b.
// Assumes radix is the radix of both numbers. This algorithm is the
// same one you learned in gradeschool.
// same one you learned in grade school.
//
//----------------------------------------------------------------------------
@@ -200,7 +200,7 @@ void __inline mulnum( PNUMBER *pa, PNUMBER b, uint32_t radix)
if ( b->cdigit > 1 || b->mant[0] != 1 || b->exp != 0 )
{ // If b is one we don't multiply exactly.
if ( (*pa)->cdigit > 1 || (*pa)->mant[0] != 1 || (*pa)->exp != 0 )
{ // pa and b are both nonone.
{ // pa and b are both non-one.
_mulnum( pa, b, radix);
}
else
@@ -285,7 +285,7 @@ void _mulnum( PNUMBER *pa, PNUMBER b, uint32_t radix)
}
}
// prevent different kinds of zeros, by stripping leading duplicate zeroes.
// prevent different kinds of zeros, by stripping leading duplicate zeros.
// digits are in order of increasing significance.
while ( c->cdigit > 1 && c->mant[c->cdigit-1] == 0 )
{

View File

@@ -237,7 +237,7 @@ void addrat( PRAT *pa, PRAT b, int32_t precision)
(*pa)->pq = bot;
trimit(pa, precision);
// Get rid of negative zeroes here.
// Get rid of negative zeros here.
(*pa)->pp->sign *= (*pa)->pq->sign;
(*pa)->pq->sign = 1;
}

View File

@@ -474,7 +474,7 @@ void scale( PRAT *px, PRAT scalefact, uint32_t radix, int32_t precision )
DUPRAT(pret,*px);
// Logscale is a quick way to tell how much extra precision is needed for
// scaleing by scalefact.
// scaling by scalefact.
long logscale = g_ratio * ( (pret->pp->cdigit+pret->pp->exp) -
(pret->pq->cdigit+pret->pq->exp) );
if ( logscale > 0 )
@@ -509,7 +509,7 @@ void scale2pi( PRAT *px, uint32_t radix, int32_t precision )
DUPRAT(pret,*px);
// Logscale is a quick way to tell how much extra precision is needed for
// scaleing by 2 pi.
// scaling by 2 pi.
long logscale = g_ratio * ( (pret->pp->cdigit+pret->pp->exp) -
(pret->pq->cdigit+pret->pq->exp) );
if ( logscale > 0 )

View File

@@ -1,4 +1,4 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
//----------------------------------------------------------------------------
@@ -134,7 +134,7 @@ void sinanglerat( _Inout_ PRAT *pa, ANGLE_TYPE angletype, uint32_t radix, int32_
//
// ARGUMENTS: x PRAT representation of number to take the cosine of
//
// RETURN: cosin of x in PRAT form.
// RETURN: cosine of x in PRAT form.
//
// EXPLANATION: This uses Taylor series
//