CalcEngine: Manage precision internally to Rational and convert functions to operator overrides (#35)

* Convert Rational::Negate to an operator override
* Convert Rational::Add to + and += operator overrides.
* Convert Rational::Sub to - and -= operator overrides.
* Convert Rational::Div and ::Mul to use /, /=, *, *= operator overrides.
* Convert Rational::Mod to use %= and % operator overrides
* Convert Rational::Rsh and ::Lsh to use >>=, >>, <<=, << operator overrides
* Convert Rational::And, ::Or, ::Xor to use &=, &, |=, |, ^=, ^ operator overrides
* Convert Rational relational functions to operator overrides
* Remove unnecessary precision arguments from Rational class and remove use of explicit Rational constructors in favor of implicit conversions for value types
* Remove unnecessary precision variable from RationalMath operations
* Replace unnecessary Rational::Not with Xor operation
* Remove unnecessary Rational::IsZero() in favor of == 0 comparisons
* Fix rounding issues in ratpak that result from using large precisions.
* Move assignment stmt out of IsCurrentTooBigForTrig
This commit is contained in:
Josh Koon 2019-02-25 11:41:32 -08:00 committed by GitHub
parent 424891516f
commit 0cb5e9bae0
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
15 changed files with 368 additions and 332 deletions

View File

@ -2,7 +2,6 @@
#include "pch.h"
#include "Header Files/Rational.h"
#include "Header Files/scimath.h"
using namespace std;
@ -50,12 +49,12 @@ namespace CalcEngine
destroyrat(pr);
}
Rational::Rational(uint64_t ui, int32_t precision)
Rational::Rational(uint64_t ui)
{
uint32_t hi = HIDWORD(ui);
uint32_t lo = LODWORD(ui);
Rational temp = Rational{ hi }.Lsh(32, precision).Or(lo, precision);
Rational temp = (Rational{ hi } << 32) | lo;
m_p = Number{ temp.P() };
m_q = Number{ temp.Q() };
@ -86,19 +85,19 @@ namespace CalcEngine
return m_q;
}
Rational Rational::Negate() const
Rational Rational::operator-() const
{
return Rational{ Number{ -1 * m_p.Sign(), m_p.Exp(), m_p.Mantissa() }, m_q };
}
Rational Rational::Add(Rational const& rhs, int32_t precision) const
Rational& Rational::operator+=(Rational const& rhs)
{
PRAT lhsRat = this->ToPRAT();
PRAT rhsRat = rhs.ToPRAT();
try
{
addrat(&lhsRat, rhsRat, precision);
addrat(&lhsRat, rhsRat, RATIONAL_PRECISION);
destroyrat(rhsRat);
}
catch (DWORD error)
@ -108,20 +107,20 @@ namespace CalcEngine
throw(error);
}
Rational result = Rational{ lhsRat };
*this = Rational{ lhsRat };
destroyrat(lhsRat);
return result;
return *this;
}
Rational Rational::Sub(Rational const& rhs, int32_t precision) const
Rational& Rational::operator-=(Rational const& rhs)
{
PRAT lhsRat = this->ToPRAT();
PRAT rhsRat = rhs.ToPRAT();
try
{
subrat(&lhsRat, rhsRat, precision);
subrat(&lhsRat, rhsRat, RATIONAL_PRECISION);
destroyrat(rhsRat);
}
catch (DWORD error)
@ -131,20 +130,20 @@ namespace CalcEngine
throw(error);
}
Rational result = Rational{ lhsRat };
*this = Rational{ lhsRat };
destroyrat(lhsRat);
return result;
return *this;
}
Rational Rational::Mul(Rational const& rhs, int32_t precision) const
Rational& Rational::operator*=(Rational const& rhs)
{
PRAT lhsRat = this->ToPRAT();
PRAT rhsRat = rhs.ToPRAT();
try
{
mulrat(&lhsRat, rhsRat, precision);
mulrat(&lhsRat, rhsRat, RATIONAL_PRECISION);
destroyrat(rhsRat);
}
catch (DWORD error)
@ -154,20 +153,20 @@ namespace CalcEngine
throw(error);
}
Rational result = Rational{ lhsRat };
*this = Rational{ lhsRat };
destroyrat(lhsRat);
return result;
return *this;
}
Rational Rational::Div(Rational const& rhs, int32_t precision) const
Rational& Rational::operator/=(Rational const& rhs)
{
PRAT lhsRat = this->ToPRAT();
PRAT rhsRat = rhs.ToPRAT();
try
{
divrat(&lhsRat, rhsRat, precision);
divrat(&lhsRat, rhsRat, RATIONAL_PRECISION);
destroyrat(rhsRat);
}
catch (DWORD error)
@ -177,13 +176,13 @@ namespace CalcEngine
throw(error);
}
Rational result = Rational{ lhsRat };
*this = Rational{ lhsRat };
destroyrat(lhsRat);
return result;
return *this;
}
Rational Rational::Mod(Rational const& rhs) const
Rational& Rational::operator%=(Rational const& rhs)
{
PRAT lhsRat = this->ToPRAT();
PRAT rhsRat = rhs.ToPRAT();
@ -200,20 +199,20 @@ namespace CalcEngine
throw(error);
}
Rational result = Rational{ lhsRat };
*this = Rational{ lhsRat };
destroyrat(lhsRat);
return result;
return *this;
}
Rational Rational::Lsh(Rational const& rhs, int32_t precision) const
Rational& Rational::operator<<=(Rational const& rhs)
{
PRAT lhsRat = this->ToPRAT();
PRAT rhsRat = rhs.ToPRAT();
try
{
lshrat(&lhsRat, rhsRat, RATIONAL_BASE, precision);
lshrat(&lhsRat, rhsRat, RATIONAL_BASE, RATIONAL_PRECISION);
destroyrat(rhsRat);
}
catch (DWORD error)
@ -223,20 +222,20 @@ namespace CalcEngine
throw(error);
}
Rational result = Rational{ lhsRat };
*this = Rational{ lhsRat };
destroyrat(lhsRat);
return result;
return *this;
}
Rational Rational::Rsh(Rational const& rhs, int32_t precision) const
Rational& Rational::operator>>=(Rational const& rhs)
{
PRAT lhsRat = this->ToPRAT();
PRAT rhsRat = rhs.ToPRAT();
try
{
rshrat(&lhsRat, rhsRat, RATIONAL_BASE, precision);
rshrat(&lhsRat, rhsRat, RATIONAL_BASE, RATIONAL_PRECISION);
destroyrat(rhsRat);
}
catch (DWORD error)
@ -246,25 +245,20 @@ namespace CalcEngine
throw(error);
}
Rational result = Rational{ lhsRat };
*this = Rational{ lhsRat };
destroyrat(lhsRat);
return result;
return *this;
}
Rational Rational::Not(Rational const& chopNum, int32_t precision) const
{
return this->Xor(chopNum, precision);
}
Rational Rational::And(Rational const& rhs, int32_t precision) const
Rational& Rational::operator&=(Rational const& rhs)
{
PRAT lhsRat = this->ToPRAT();
PRAT rhsRat = rhs.ToPRAT();
try
{
andrat(&lhsRat, rhsRat, RATIONAL_BASE, precision);
andrat(&lhsRat, rhsRat, RATIONAL_BASE, RATIONAL_PRECISION);
destroyrat(rhsRat);
}
catch (DWORD error)
@ -274,19 +268,19 @@ namespace CalcEngine
throw(error);
}
Rational result = Rational{ lhsRat };
*this = Rational{ lhsRat };
destroyrat(lhsRat);
return result;
return *this;
}
Rational Rational::Or(Rational const& rhs, int32_t precision) const
Rational& Rational::operator|=(Rational const& rhs)
{
PRAT lhsRat = this->ToPRAT();
PRAT rhsRat = rhs.ToPRAT();
try
{
orrat(&lhsRat, rhsRat, RATIONAL_BASE, precision);
orrat(&lhsRat, rhsRat, RATIONAL_BASE, RATIONAL_PRECISION);
destroyrat(rhsRat);
}
catch (DWORD error)
@ -296,19 +290,19 @@ namespace CalcEngine
throw(error);
}
Rational result = Rational{ lhsRat };
*this = Rational{ lhsRat };
destroyrat(lhsRat);
return result;
return *this;
}
Rational Rational::Xor(Rational const& rhs, int32_t precision) const
Rational& Rational::operator^=(Rational const& rhs)
{
PRAT lhsRat = this->ToPRAT();
PRAT rhsRat = rhs.ToPRAT();
try
{
xorrat(&lhsRat, rhsRat, RATIONAL_BASE, precision);
xorrat(&lhsRat, rhsRat, RATIONAL_BASE, RATIONAL_PRECISION);
destroyrat(rhsRat);
}
catch (DWORD error)
@ -318,107 +312,136 @@ namespace CalcEngine
throw(error);
}
Rational result = Rational{ lhsRat };
*this = Rational{ lhsRat };
destroyrat(lhsRat);
return result;
return *this;
}
bool Rational::IsZero() const
Rational operator+(Rational lhs, Rational const& rhs)
{
return this->P().IsZero();
lhs += rhs;
return lhs;
}
bool Rational::IsLess(Rational const& r, int32_t precision) const
Rational operator-(Rational lhs, Rational const& rhs)
{
PRAT thisRat = this->ToPRAT();
PRAT rRat = r.ToPRAT();
lhs -= rhs;
return lhs;
}
Rational operator*(Rational lhs, Rational const& rhs)
{
lhs *= rhs;
return lhs;
}
Rational operator/(Rational lhs, Rational const& rhs)
{
lhs /= rhs;
return lhs;
}
Rational operator%(Rational lhs, Rational const& rhs)
{
lhs %= rhs;
return lhs;
}
Rational operator<<(Rational lhs, Rational const& rhs)
{
lhs <<= rhs;
return lhs;
}
Rational operator>>(Rational lhs, Rational const& rhs)
{
lhs >>= rhs;
return lhs;
}
Rational operator&(Rational lhs, Rational const& rhs)
{
lhs &= rhs;
return lhs;
}
Rational operator|(Rational lhs, Rational const& rhs)
{
lhs |= rhs;
return lhs;
}
Rational operator^(Rational lhs, Rational const& rhs)
{
lhs ^= rhs;
return lhs;
}
bool operator==(Rational const& lhs, Rational const& rhs)
{
PRAT lhsRat = lhs.ToPRAT();
PRAT rhsRat = rhs.ToPRAT();
bool result = false;
try
{
result = rat_lt(thisRat, rRat, precision);
result = rat_equ(lhsRat, rhsRat, RATIONAL_PRECISION);
}
catch (DWORD error)
{
destroyrat(thisRat);
destroyrat(rRat);
destroyrat(lhsRat);
destroyrat(rhsRat);
throw(error);
}
destroyrat(thisRat);
destroyrat(rRat);
destroyrat(lhsRat);
destroyrat(rhsRat);
return result;
}
bool Rational::IsLessEq(Rational const& r, int32_t precision) const
bool operator!=(Rational const& lhs, Rational const& rhs)
{
PRAT thisRat = this->ToPRAT();
PRAT rRat = r.ToPRAT();
return !(lhs == rhs);
}
bool operator<(Rational const& lhs, Rational const& rhs)
{
PRAT lhsRat = lhs.ToPRAT();
PRAT rhsRat = rhs.ToPRAT();
bool result = false;
try
{
result = rat_le(thisRat, rRat, precision);
result = rat_lt(lhsRat, rhsRat, RATIONAL_PRECISION);
}
catch (DWORD error)
{
destroyrat(thisRat);
destroyrat(rRat);
destroyrat(lhsRat);
destroyrat(rhsRat);
throw(error);
}
destroyrat(thisRat);
destroyrat(rRat);
destroyrat(lhsRat);
destroyrat(rhsRat);
return result;
}
bool Rational::IsGreaterEq(Rational const& r, int32_t precision) const
bool operator>(Rational const& lhs, Rational const& rhs)
{
PRAT thisRat = this->ToPRAT();
PRAT rRat = r.ToPRAT();
bool result = false;
try
{
result = rat_ge(thisRat, rRat, precision);
}
catch (DWORD error)
{
destroyrat(thisRat);
destroyrat(rRat);
throw(error);
return rhs < lhs;
}
destroyrat(thisRat);
destroyrat(rRat);
return result;
bool operator<=(Rational const& lhs, Rational const& rhs)
{
return !(lhs > rhs);
}
bool Rational::IsEq(Rational const& r, int32_t precision) const
bool operator>=(Rational const& lhs, Rational const& rhs)
{
PRAT thisRat = this->ToPRAT();
PRAT rRat = r.ToPRAT();
bool result = false;
try
{
result = rat_equ(thisRat, rRat, precision);
}
catch (DWORD error)
{
destroyrat(thisRat);
destroyrat(rRat);
throw(error);
}
destroyrat(thisRat);
destroyrat(rRat);
return result;
return !(lhs < rhs);
}
wstring Rational::ToString(uint32_t radix, NUMOBJ_FMT fmt, int32_t precision) const
@ -441,13 +464,13 @@ namespace CalcEngine
return result;
}
uint64_t Rational::ToUInt64_t(int32_t precision) const
uint64_t Rational::ToUInt64_t() const
{
PRAT rat = this->ToPRAT();
uint64_t result;
try
{
result = rattoUlonglong(rat, RATIONAL_BASE, precision);
result = rattoUlonglong(rat, RATIONAL_BASE, RATIONAL_PRECISION);
}
catch (DWORD error)
{

View File

@ -95,7 +95,7 @@ CCalcEngine::CCalcEngine(bool fPrecedence, bool fIntegerMode, CalculationManager
m_dwWordBitWidth = DwWordBitWidthFromeNumWidth(m_numwidth);
m_maxTrigonometricNum = RationalMath::Pow(10, 100, m_precision);
m_maxTrigonometricNum = RationalMath::Pow(10, 100);
SetRadixTypeAndNumWidth(DEC_RADIX, m_numwidth);
SettingsChanged();
@ -117,8 +117,8 @@ void CCalcEngine::InitChopNumbers()
assert(m_chopNumbers.size() == m_maxDecimalValueStrings.size());
for (size_t i = 0; i < m_chopNumbers.size(); i++)
{
auto maxVal = m_chopNumbers[i].Div(2, m_precision);
maxVal = RationalMath::Integer(maxVal, m_precision);
auto maxVal = m_chopNumbers[i] / 2;
maxVal = RationalMath::Integer(maxVal);
m_maxDecimalValueStrings[i] = maxVal.ToString(10, FMT_FLOAT, m_precision);
}

View File

@ -318,6 +318,7 @@ void CCalcEngine::ProcessCommandWorker(WPARAM wParam)
{
if (IsCurrentTooBigForTrig())
{
m_currentVal = 0;
DisplayError(CALC_E_DOMAIN);
return;
}
@ -382,7 +383,7 @@ void CCalcEngine::ProcessCommandWorker(WPARAM wParam)
CheckAndAddLastBinOpToHistory(false);
}
m_lastVal = Rational{};
m_lastVal = 0;
m_bChangeOp = false;
m_precedenceOpCount = m_nTempCom = m_nLastCom = m_nOpCode = m_openParenCount = 0;
@ -563,12 +564,12 @@ void CCalcEngine::ProcessCommandWorker(WPARAM wParam)
m_nPrecOp[m_precedenceOpCount++] = 0;
}
m_lastVal = Rational{};
m_lastVal = 0;
if (IsBinOpCode(m_nLastCom))
{
// We want 1 + ( to start as 1 + (0. Any number you type replaces 0. But if it is 1 + 3 (, it is
// treated as 1 + (3
m_currentVal = Rational{};
m_currentVal = 0;
}
m_nTempCom = 0;
m_nOpCode = 0;
@ -691,7 +692,7 @@ void CCalcEngine::ProcessCommandWorker(WPARAM wParam)
m_HistoryCollector.AddOpndToHistory(m_numberString, m_currentVal);
}
m_currentVal = m_currentVal.Negate();
m_currentVal = -(m_currentVal);
DisplayNum();
m_HistoryCollector.AddUnaryOpToHistory(IDC_SIGN, m_bInv, m_angletype);
@ -708,7 +709,7 @@ void CCalcEngine::ProcessCommandWorker(WPARAM wParam)
else
{
// Recall immediate memory value.
m_currentVal = Rational{ *m_memoryValue };
m_currentVal = *m_memoryValue;
}
CheckAndAddLastBinOpToHistory();
DisplayNum();
@ -718,7 +719,7 @@ void CCalcEngine::ProcessCommandWorker(WPARAM wParam)
{
/* MPLUS adds m_currentVal to immediate memory and kills the "mem" */
/* indicator if the result is zero. */
Rational result = m_memoryValue->Add(m_currentVal, m_precision);
Rational result = *m_memoryValue + m_currentVal;
m_memoryValue = make_unique<Rational>(TruncateNumForIntMath(result)); // Memory should follow the current int mode
break;
@ -727,14 +728,14 @@ void CCalcEngine::ProcessCommandWorker(WPARAM wParam)
{
/* MMINUS subtracts m_currentVal to immediate memory and kills the "mem" */
/* indicator if the result is zero. */
Rational result = m_memoryValue->Sub(m_currentVal, m_precision);
Rational result = *m_memoryValue - m_currentVal;
m_memoryValue = make_unique<Rational>(TruncateNumForIntMath(result));
break;
}
case IDC_STORE:
case IDC_MCLEAR:
m_memoryValue = make_unique<Rational>(wParam == IDC_STORE ? TruncateNumForIntMath(m_currentVal) : Rational{});
m_memoryValue = make_unique<Rational>(wParam == IDC_STORE ? TruncateNumForIntMath(m_currentVal) : 0);
break;
case IDC_PI:
@ -1002,13 +1003,7 @@ int CCalcEngine::IdcSetAngleTypeDecMode(int idc)
bool CCalcEngine::IsCurrentTooBigForTrig()
{
if (m_currentVal.IsGreaterEq(m_maxTrigonometricNum, m_precision))
{
m_currentVal = Rational{};
return true;
}
return false;
return m_currentVal >= m_maxTrigonometricNum;
}
int CCalcEngine::GetCurrentRadix()
@ -1048,14 +1043,12 @@ wstring CCalcEngine::GetStringForDisplay(Rational const& rat, uint32_t radix)
try
{
uint64_t w64Bits = tempRat.ToUInt64_t(m_precision);
uint64_t w64Bits = tempRat.ToUInt64_t();
bool fMsb = ((w64Bits >> (m_dwWordBitWidth - 1)) & 1);
if ((radix == 10) && fMsb)
{
// If high bit is set, then get the decimal number in negative 2's compl form.
tempRat = tempRat.Not(m_chopNumbers[m_numwidth], m_precision);
tempRat = tempRat.Add(1, m_precision);
tempRat = tempRat.Negate();
tempRat = -((tempRat ^ m_chopNumbers[m_numwidth]) + 1);
}
result = tempRat.ToString(radix, m_nFE, m_precision);

View File

@ -57,19 +57,18 @@ CalcEngine::Rational CCalcEngine::TruncateNumForIntMath(CalcEngine::Rational con
}
// Truncate to an integer. Do not round here.
auto result = RationalMath::Integer(rat, m_precision);
auto result = RationalMath::Integer(rat);
// Can be converting a dec negative number to Hex/Oct/Bin rep. Use 2's complement form
// Check the range.
if (result.IsLess(0, m_precision))
if (result < 0)
{
// if negative make positive by doing a twos complement
result = result.Negate();
result = result.Sub(1, m_precision);
result = result.Not(m_chopNumbers[m_numwidth], m_precision);
result = -(result) - 1;
result ^= m_chopNumbers[m_numwidth];
}
result = result.And(m_chopNumbers[m_numwidth], m_precision);
result &= m_chopNumbers[m_numwidth];
return result;
}
@ -84,7 +83,7 @@ void CCalcEngine::DisplayNum(void)
// called.
//
if (m_bRecord ||
!gldPrevious.value.IsEq(m_currentVal, m_precision) ||
gldPrevious.value != m_currentVal ||
gldPrevious.precision != m_precision ||
gldPrevious.radix != m_radix ||
gldPrevious.nFE != (int)m_nFE ||

View File

@ -32,20 +32,18 @@ CalcEngine::Rational CCalcEngine::SciCalcFunctions(CalcEngine::Rational const& r
switch (op)
{
case IDC_CHOP:
result = m_bInv ? Frac(rat, m_precision) : Integer(rat, m_precision);
result = m_bInv ? Frac(rat) : Integer(rat);
break;
/* Return complement. */
case IDC_COM:
if (m_radix == 10 && !m_fIntegerMode)
{
result = RationalMath::Integer(rat, m_precision);
result = result.Add(1, m_precision);
result = result.Negate();
result = -(RationalMath::Integer(rat) + 1);
}
else
{
result = rat.Xor(m_chopNumbers[m_numwidth], m_precision);
result = rat ^ m_chopNumbers[m_numwidth];
}
break;
@ -53,14 +51,14 @@ CalcEngine::Rational CCalcEngine::SciCalcFunctions(CalcEngine::Rational const& r
case IDC_ROL:
if (m_fIntegerMode)
{
result = Integer(rat, m_precision);
result = Integer(rat);
uint64_t w64Bits = result.ToUInt64_t(m_precision);
uint64_t w64Bits = result.ToUInt64_t();
uint64_t msb = (w64Bits >> (m_dwWordBitWidth - 1)) & 1;
w64Bits <<= 1; // LShift by 1
w64Bits |= msb; // Set the prev Msb as the current Lsb
result = Rational{ w64Bits, m_precision };
result = w64Bits;
}
break;
@ -68,14 +66,14 @@ CalcEngine::Rational CCalcEngine::SciCalcFunctions(CalcEngine::Rational const& r
case IDC_ROR:
if (m_fIntegerMode)
{
result = Integer(rat, m_precision);
result = Integer(rat);
uint64_t w64Bits = result.ToUInt64_t(m_precision);
uint64_t w64Bits = result.ToUInt64_t();
uint64_t lsb = ((w64Bits & 0x01) == 1) ? 1 : 0;
w64Bits >>= 1; //RShift by 1
w64Bits |= (lsb << (m_dwWordBitWidth - 1));
result = Rational{ w64Bits, m_precision };
result = w64Bits;
}
break;
@ -85,12 +83,11 @@ CalcEngine::Rational CCalcEngine::SciCalcFunctions(CalcEngine::Rational const& r
// Otherwise, we evaluate it as "X [op] (X * Y%)"
if (m_nOpCode == IDC_MUL || m_nOpCode == IDC_DIV)
{
result = rat.Div(100, m_precision);
result = rat / 100;
}
else
{
result = m_lastVal.Div(100, m_precision);
result = rat.Mul(result, m_precision);
result = rat * (m_lastVal / 100);
}
break;
}
@ -98,76 +95,76 @@ CalcEngine::Rational CCalcEngine::SciCalcFunctions(CalcEngine::Rational const& r
case IDC_SIN: /* Sine; normal and arc */
if (!m_fIntegerMode)
{
result = m_bInv ? ASin(rat, m_angletype, m_precision) : Sin(rat, m_angletype, m_precision);
result = m_bInv ? ASin(rat, m_angletype) : Sin(rat, m_angletype);
}
break;
case IDC_SINH: /* Sine- hyperbolic and archyperbolic */
if (!m_fIntegerMode)
{
result = m_bInv ? ASinh(rat, m_precision) : Sinh(rat, m_precision);
result = m_bInv ? ASinh(rat) : Sinh(rat);
}
break;
case IDC_COS: /* Cosine, follows convention of sine function. */
if (!m_fIntegerMode)
{
result = m_bInv ? ACos(rat, m_angletype, m_precision) : Cos(rat, m_angletype, m_precision);
result = m_bInv ? ACos(rat, m_angletype) : Cos(rat, m_angletype);
}
break;
case IDC_COSH: /* Cosine hyperbolic, follows convention of sine h function. */
if (!m_fIntegerMode)
{
result = m_bInv ? ACosh(rat, m_precision) : Cosh(rat, m_precision);
result = m_bInv ? ACosh(rat) : Cosh(rat);
}
break;
case IDC_TAN: /* Same as sine and cosine. */
if (!m_fIntegerMode)
{
result = m_bInv ? ATan(rat, m_angletype, m_precision) : Tan(rat, m_angletype, m_precision);
result = m_bInv ? ATan(rat, m_angletype) : Tan(rat, m_angletype);
}
break;
case IDC_TANH: /* Same as sine h and cosine h. */
if (!m_fIntegerMode)
{
result = m_bInv ? ATanh(rat, m_precision) : Tanh(rat, m_precision);
result = m_bInv ? ATanh(rat) : Tanh(rat);
}
break;
case IDC_REC: /* Reciprocal. */
result = Invert(rat, m_precision);
result = Invert(rat);
break;
case IDC_SQR: /* Square */
result = Pow(rat, 2, m_precision);
result = Pow(rat, 2);
break;
case IDC_SQRT: /* Square Root */
result = Root(rat, 2, m_precision);
result = Root(rat, 2);
break;
case IDC_CUBEROOT:
case IDC_CUB: /* Cubing and cube root functions. */
result = IDC_CUBEROOT == op ? Root(rat, 3, m_precision) : Pow(rat, 3, m_precision);
result = IDC_CUBEROOT == op ? Root(rat, 3) : Pow(rat, 3);
break;
case IDC_LOG: /* Functions for common log. */
result = Log10(rat, m_precision);
result = Log10(rat);
break;
case IDC_POW10:
result = Pow(10, rat, m_precision);
result = Pow(10, rat);
break;
case IDC_LN: /* Functions for natural log. */
result = m_bInv ? Exp(rat, m_precision) : Log(rat, m_precision);
result = m_bInv ? Exp(rat) : Log(rat);
break;
case IDC_FAC: /* Calculate factorial. Inverse is ineffective. */
result = Fact(rat, m_precision);
result = Fact(rat);
break;
case IDC_DEGREES:
@ -180,31 +177,28 @@ CalcEngine::Rational CCalcEngine::SciCalcFunctions(CalcEngine::Rational const& r
{
if (!m_fIntegerMode)
{
Rational shftRat{ m_bInv ? 100 : 60 };
auto shftRat{ m_bInv ? 100 : 60 };
Rational degreeRat = Integer(rat, m_precision);
Rational degreeRat = Integer(rat);
Rational minuteRat = rat.Sub(degreeRat, m_precision);
minuteRat = minuteRat.Mul(shftRat, m_precision);
Rational minuteRat = (rat - degreeRat) * shftRat;
Rational secondRat = minuteRat;
minuteRat = Integer(minuteRat, m_precision);
minuteRat = Integer(minuteRat);
secondRat = secondRat.Sub(minuteRat, m_precision);
secondRat = secondRat.Mul(shftRat, m_precision);
secondRat = (secondRat - minuteRat) * shftRat;
//
// degreeRat == degrees, minuteRat == minutes, secondRat == seconds
//
shftRat = Rational{ m_bInv ? 60 : 100 };
secondRat = secondRat.Div(shftRat, m_precision);
shftRat = m_bInv ? 60 : 100;
secondRat /= shftRat;
minuteRat = minuteRat.Add(secondRat, m_precision);
minuteRat = minuteRat.Div(shftRat, m_precision);
minuteRat = (minuteRat + secondRat) / shftRat;
result = degreeRat.Add(minuteRat, m_precision);
result = degreeRat + minuteRat;
}
break;
}

View File

@ -2,18 +2,17 @@
// Licensed under the MIT License.
#include "pch.h"
#include "Header Files/CalcEngine.h"
#include "Ratpack/ratpak.h"
#include "Header Files/scimath.h"
using namespace std;
using namespace CalcEngine;
Rational RationalMath::Frac(Rational const& rat, int32_t precision)
Rational RationalMath::Frac(Rational const& rat)
{
PRAT prat = rat.ToPRAT();
try
{
fracrat(&prat, RATIONAL_BASE, precision);
fracrat(&prat, RATIONAL_BASE, RATIONAL_PRECISION);
}
catch (DWORD error)
{
@ -27,12 +26,12 @@ Rational RationalMath::Frac(Rational const& rat, int32_t precision)
return result;
}
Rational RationalMath::Integer(Rational const& rat, int32_t precision)
Rational RationalMath::Integer(Rational const& rat)
{
PRAT prat = rat.ToPRAT();
try
{
intrat(&prat, RATIONAL_BASE, precision);
intrat(&prat, RATIONAL_BASE, RATIONAL_PRECISION);
}
catch (DWORD error)
{
@ -46,14 +45,14 @@ Rational RationalMath::Integer(Rational const& rat, int32_t precision)
return result;
}
Rational RationalMath::Pow(Rational const& base, Rational const& pow, int32_t precision)
Rational RationalMath::Pow(Rational const& base, Rational const& pow)
{
PRAT baseRat = base.ToPRAT();
PRAT powRat = pow.ToPRAT();
try
{
powrat(&baseRat, powRat, RATIONAL_BASE, precision);
powrat(&baseRat, powRat, RATIONAL_BASE, RATIONAL_PRECISION);
destroyrat(powRat);
}
catch (DWORD error)
@ -69,18 +68,18 @@ Rational RationalMath::Pow(Rational const& base, Rational const& pow, int32_t pr
return result;
}
Rational RationalMath::Root(Rational const& base, Rational const& root, int32_t precision)
Rational RationalMath::Root(Rational const& base, Rational const& root)
{
return Pow(base, Invert(root, precision), precision);
return Pow(base, Invert(root));
}
Rational RationalMath::Fact(Rational const& rat, int32_t precision)
Rational RationalMath::Fact(Rational const& rat)
{
PRAT prat = rat.ToPRAT();
try
{
factrat(&prat, RATIONAL_BASE, precision);
factrat(&prat, RATIONAL_BASE, RATIONAL_PRECISION);
}
catch (DWORD error)
{
@ -94,13 +93,13 @@ Rational RationalMath::Fact(Rational const& rat, int32_t precision)
return result;
}
Rational RationalMath::Exp(Rational const& rat, int32_t precision)
Rational RationalMath::Exp(Rational const& rat)
{
PRAT prat = rat.ToPRAT();
try
{
exprat(&prat, RATIONAL_BASE, precision);
exprat(&prat, RATIONAL_BASE, RATIONAL_PRECISION);
}
catch (DWORD error)
{
@ -114,13 +113,13 @@ Rational RationalMath::Exp(Rational const& rat, int32_t precision)
return result;
}
Rational RationalMath::Log(Rational const& rat, int32_t precision)
Rational RationalMath::Log(Rational const& rat)
{
PRAT prat = rat.ToPRAT();
try
{
lograt(&prat, precision);
lograt(&prat, RATIONAL_PRECISION);
}
catch (DWORD error)
{
@ -134,14 +133,14 @@ Rational RationalMath::Log(Rational const& rat, int32_t precision)
return result;
}
Rational RationalMath::Log10(Rational const& rat, int32_t precision)
Rational RationalMath::Log10(Rational const& rat)
{
return Log(rat, precision).Div(Rational{ ln_ten }, precision);
return Log(rat) / Rational{ ln_ten };
}
Rational RationalMath::Invert(Rational const& rat, int32_t precision)
Rational RationalMath::Invert(Rational const& rat)
{
return Rational{ 1 }.Div(rat, precision);
return 1 / rat;
}
Rational RationalMath::Abs(Rational const& rat)
@ -149,13 +148,13 @@ Rational RationalMath::Abs(Rational const& rat)
return Rational{ Number{ 1, rat.P().Exp(), rat.P().Mantissa() }, Number{ 1, rat.Q().Exp(), rat.Q().Mantissa() } };
}
Rational RationalMath::Sin(Rational const& rat, ANGLE_TYPE angletype, int32_t precision)
Rational RationalMath::Sin(Rational const& rat, ANGLE_TYPE angletype)
{
PRAT prat = rat.ToPRAT();
try
{
sinanglerat(&prat, angletype, RATIONAL_BASE, precision);
sinanglerat(&prat, angletype, RATIONAL_BASE, RATIONAL_PRECISION);
}
catch (DWORD error)
{
@ -169,13 +168,13 @@ Rational RationalMath::Sin(Rational const& rat, ANGLE_TYPE angletype, int32_t pr
return result;
}
Rational RationalMath::Cos(Rational const& rat, ANGLE_TYPE angletype, int32_t precision)
Rational RationalMath::Cos(Rational const& rat, ANGLE_TYPE angletype)
{
PRAT prat = rat.ToPRAT();
try
{
cosanglerat(&prat, angletype, RATIONAL_BASE, precision);
cosanglerat(&prat, angletype, RATIONAL_BASE, RATIONAL_PRECISION);
}
catch (DWORD error)
{
@ -189,13 +188,13 @@ Rational RationalMath::Cos(Rational const& rat, ANGLE_TYPE angletype, int32_t pr
return result;
}
Rational RationalMath::Tan(Rational const& rat, ANGLE_TYPE angletype, int32_t precision)
Rational RationalMath::Tan(Rational const& rat, ANGLE_TYPE angletype)
{
PRAT prat = rat.ToPRAT();
try
{
tananglerat(&prat, angletype, RATIONAL_BASE, precision);
tananglerat(&prat, angletype, RATIONAL_BASE, RATIONAL_PRECISION);
}
catch (DWORD error)
{
@ -209,13 +208,13 @@ Rational RationalMath::Tan(Rational const& rat, ANGLE_TYPE angletype, int32_t pr
return result;
}
Rational RationalMath::ASin(Rational const& rat, ANGLE_TYPE angletype, int32_t precision)
Rational RationalMath::ASin(Rational const& rat, ANGLE_TYPE angletype)
{
PRAT prat = rat.ToPRAT();
try
{
asinanglerat(&prat, angletype, RATIONAL_BASE, precision);
asinanglerat(&prat, angletype, RATIONAL_BASE, RATIONAL_PRECISION);
}
catch (DWORD error)
{
@ -229,13 +228,13 @@ Rational RationalMath::ASin(Rational const& rat, ANGLE_TYPE angletype, int32_t p
return result;
}
Rational RationalMath::ACos(Rational const& rat, ANGLE_TYPE angletype, int32_t precision)
Rational RationalMath::ACos(Rational const& rat, ANGLE_TYPE angletype)
{
PRAT prat = rat.ToPRAT();
try
{
acosanglerat(&prat, angletype, RATIONAL_BASE, precision);
acosanglerat(&prat, angletype, RATIONAL_BASE, RATIONAL_PRECISION);
}
catch (DWORD error)
{
@ -249,13 +248,13 @@ Rational RationalMath::ACos(Rational const& rat, ANGLE_TYPE angletype, int32_t p
return result;
}
Rational RationalMath::ATan(Rational const& rat, ANGLE_TYPE angletype, int32_t precision)
Rational RationalMath::ATan(Rational const& rat, ANGLE_TYPE angletype)
{
PRAT prat = rat.ToPRAT();
try
{
atananglerat(&prat, angletype, RATIONAL_BASE, precision);
atananglerat(&prat, angletype, RATIONAL_BASE, RATIONAL_PRECISION);
}
catch (DWORD error)
{
@ -269,13 +268,13 @@ Rational RationalMath::ATan(Rational const& rat, ANGLE_TYPE angletype, int32_t p
return result;
}
Rational RationalMath::Sinh(Rational const& rat, int32_t precision)
Rational RationalMath::Sinh(Rational const& rat)
{
PRAT prat = rat.ToPRAT();
try
{
sinhrat(&prat, RATIONAL_BASE, precision);
sinhrat(&prat, RATIONAL_BASE, RATIONAL_PRECISION);
}
catch (DWORD error)
{
@ -289,13 +288,13 @@ Rational RationalMath::Sinh(Rational const& rat, int32_t precision)
return result;
}
Rational RationalMath::Cosh(Rational const& rat, int32_t precision)
Rational RationalMath::Cosh(Rational const& rat)
{
PRAT prat = rat.ToPRAT();
try
{
coshrat(&prat, RATIONAL_BASE, precision);
coshrat(&prat, RATIONAL_BASE, RATIONAL_PRECISION);
}
catch (DWORD error)
{
@ -309,13 +308,13 @@ Rational RationalMath::Cosh(Rational const& rat, int32_t precision)
return result;
}
Rational RationalMath::Tanh(Rational const& rat, int32_t precision)
Rational RationalMath::Tanh(Rational const& rat)
{
PRAT prat = rat.ToPRAT();
try
{
tanhrat(&prat, RATIONAL_BASE, precision);
tanhrat(&prat, RATIONAL_BASE, RATIONAL_PRECISION);
}
catch (DWORD error)
{
@ -329,13 +328,13 @@ Rational RationalMath::Tanh(Rational const& rat, int32_t precision)
return result;
}
Rational RationalMath::ASinh(Rational const& rat, int32_t precision)
Rational RationalMath::ASinh(Rational const& rat)
{
PRAT prat = rat.ToPRAT();
try
{
asinhrat(&prat, RATIONAL_BASE, precision);
asinhrat(&prat, RATIONAL_BASE, RATIONAL_PRECISION);
}
catch (DWORD error)
{
@ -349,13 +348,13 @@ Rational RationalMath::ASinh(Rational const& rat, int32_t precision)
return result;
}
Rational RationalMath::ACosh(Rational const& rat, int32_t precision)
Rational RationalMath::ACosh(Rational const& rat)
{
PRAT prat = rat.ToPRAT();
try
{
acoshrat(&prat, RATIONAL_BASE, precision);
acoshrat(&prat, RATIONAL_BASE, RATIONAL_PRECISION);
}
catch (DWORD error)
{
@ -369,13 +368,13 @@ Rational RationalMath::ACosh(Rational const& rat, int32_t precision)
return result;
}
Rational RationalMath::ATanh(Rational const& rat, int32_t precision)
Rational RationalMath::ATanh(Rational const& rat)
{
PRAT prat = rat.ToPRAT();
try
{
atanhrat(&prat, precision);
atanhrat(&prat, RATIONAL_PRECISION);
}
catch (DWORD error)
{

View File

@ -11,69 +11,68 @@ using namespace CalcEngine::RationalMath;
CalcEngine::Rational CCalcEngine::DoOperation(int operation, CalcEngine::Rational const& lhs, CalcEngine::Rational const& rhs)
{
// Remove any variance in how 0 could be represented in rat e.g. -0, 0/n, etc.
auto result = (!lhs.IsZero() ? lhs : Rational{});
auto result = (lhs != 0 ? lhs : 0);
try
{
switch (operation)
{
case IDC_AND:
result = result.And(rhs, m_precision);
result &= rhs;
break;
case IDC_OR:
result = result.Or(rhs, m_precision);
result |= rhs;
break;
case IDC_XOR:
result = result.Xor(rhs, m_precision);
result ^= rhs;
break;
case IDC_RSHF:
{
if (m_fIntegerMode && result.IsGreaterEq(Rational{ m_dwWordBitWidth }, m_precision)) // Lsh/Rsh >= than current word size is always 0
if (m_fIntegerMode && result >= m_dwWordBitWidth) // Lsh/Rsh >= than current word size is always 0
{
throw CALC_E_NORESULT;
}
uint64_t w64Bits = rhs.ToUInt64_t(m_precision);
uint64_t w64Bits = rhs.ToUInt64_t();
bool fMsb = (w64Bits >> (m_dwWordBitWidth - 1)) & 1;
Rational holdVal = result;
result = rhs.Rsh(holdVal, m_precision);
result = rhs >> holdVal;
if (fMsb)
{
result = Integer(result, m_precision);
result = Integer(result);
auto tempRat = m_chopNumbers[m_numwidth].Rsh(holdVal, m_precision);
tempRat = Integer(tempRat, m_precision);
auto tempRat = m_chopNumbers[m_numwidth] >> holdVal;
tempRat = Integer(tempRat);
tempRat = tempRat.Xor(m_chopNumbers[m_numwidth], m_precision);
result = result.Or(tempRat, m_precision);
result |= tempRat ^ m_chopNumbers[m_numwidth];
}
break;
}
case IDC_LSHF:
if (m_fIntegerMode && result.IsGreaterEq(Rational{ m_dwWordBitWidth }, m_precision)) // Lsh/Rsh >= than current word size is always 0
if (m_fIntegerMode && result >= m_dwWordBitWidth) // Lsh/Rsh >= than current word size is always 0
{
throw CALC_E_NORESULT;
}
result = rhs.Lsh(result, m_precision);
result = rhs << result;
break;
case IDC_ADD:
result = result.Add(rhs, m_precision);
result += rhs;
break;
case IDC_SUB:
result = rhs.Sub(result, m_precision);
result = rhs - result;
break;
case IDC_MUL:
result = result.Mul(rhs, m_precision);
result *= rhs;
break;
case IDC_DIV:
@ -85,24 +84,22 @@ CalcEngine::Rational CCalcEngine::DoOperation(int operation, CalcEngine::Rationa
if (m_fIntegerMode)
{
uint64_t w64Bits = rhs.ToUInt64_t(m_precision);
uint64_t w64Bits = rhs.ToUInt64_t();
bool fMsb = (w64Bits >> (m_dwWordBitWidth - 1)) & 1;
if (fMsb)
{
result = rhs.Not(m_chopNumbers[m_numwidth], m_precision);
result = result.Add(1, m_precision);
result = (rhs ^ m_chopNumbers[m_numwidth]) + 1;
iNumeratorSign = -1;
}
w64Bits = temp.ToUInt64_t(m_precision);
w64Bits = temp.ToUInt64_t();
fMsb = (w64Bits >> (m_dwWordBitWidth - 1)) & 1;
if (fMsb)
{
temp = temp.Not(m_chopNumbers[m_numwidth], m_precision);
temp = temp.Add(1, m_precision);
temp = (temp ^ m_chopNumbers[m_numwidth]) + 1;
iDenominatorSign = -1;
}
@ -111,28 +108,28 @@ CalcEngine::Rational CCalcEngine::DoOperation(int operation, CalcEngine::Rationa
if (operation == IDC_DIV)
{
iFinalSign = iNumeratorSign * iDenominatorSign;
result = result.Div(temp, m_precision);
result /= temp;
}
else
{
iFinalSign = iNumeratorSign;
result = result.Mod(temp);
result %= temp;
}
if (m_fIntegerMode && iFinalSign == -1)
{
result = Integer(result, m_precision).Negate();
result = -(Integer(result));
}
break;
}
case IDC_PWR: // Calculates rhs to the result(th) power.
result = Pow(rhs, result, m_precision);
result = Pow(rhs, result);
break;
case IDC_ROOT: // Calculates rhs to the result(th) root.
result = Root(rhs, result, m_precision);
result = Root(rhs, result);
break;
}
}

View File

@ -18,16 +18,15 @@ void CCalcEngine::SetRadixTypeAndNumWidth(RADIX_TYPE radixtype, NUM_WIDTH numwid
// back to 1111,1111,1000,0001 when in Word mode.
if (m_fIntegerMode)
{
uint64_t w64Bits = m_currentVal.ToUInt64_t(m_precision);
uint64_t w64Bits = m_currentVal.ToUInt64_t();
bool fMsb = (w64Bits >> (m_dwWordBitWidth - 1)) & 1; // make sure you use the old width
if (fMsb)
{
// If high bit is set, then get the decimal number in -ve 2'scompl form.
auto tempResult = m_currentVal.Not(m_chopNumbers[m_numwidth], m_precision);
tempResult = tempResult.Add(1, m_precision);
auto tempResult = m_currentVal ^ m_chopNumbers[m_numwidth];
m_currentVal = tempResult.Negate();
m_currentVal = -(tempResult + 1);
}
}
@ -85,16 +84,13 @@ bool CCalcEngine::TryToggleBit(CalcEngine::Rational& rat, DWORD wbitno)
return false; // ignore error cant happen
}
Rational result = Integer(rat, m_precision);
if (result.IsZero())
{
// This is the same work around happenning in SciCalcFunctions. Ought to move to intrat function itself.
// Basic bug is there which doesn't treat 0/ n as 0, or -0 as 0 etc.
result = Rational{};
}
Rational result = Integer(rat);
auto pow = Pow(2, static_cast<int32_t>(wbitno), m_precision);
rat = result.Xor(pow, m_precision);
// Remove any variance in how 0 could be represented in rat e.g. -0, 0/n, etc.
result = (result != 0 ? result : 0);
// XOR the result with 2^wbitno power
rat = result ^ Pow(2, static_cast<int32_t>(wbitno));
return true;
}

View File

@ -14,7 +14,6 @@
*
\****************************************************************************/
#include "scimath.h"
#include "CCommand.h"
#include "EngineStrings.h"
#include "../Command.h"
@ -24,6 +23,7 @@
#include "History.h" // for History Collector
#include "CalcInput.h"
#include "ICalcDisplay.h"
#include "scimath.h"
#include "Rational.h"
// The following are NOT real exports of CalcEngine, but for forward declarations

View File

@ -10,6 +10,9 @@ namespace CalcEngine
// RatPack calculations currently support up to Base64.
inline constexpr uint32_t RATIONAL_BASE = 10;
// Default Precision to use for Rational calculations
inline constexpr int32_t RATIONAL_PRECISION = 128;
class Rational
{
public:
@ -18,7 +21,7 @@ namespace CalcEngine
Rational(Number const& p, Number const& q) noexcept;
Rational(int32_t i);
Rational(uint32_t ui);
Rational(uint64_t ui, int32_t precision);
Rational(uint64_t ui);
explicit Rational(PRAT prat) noexcept;
PRAT ToPRAT() const;
@ -26,29 +29,42 @@ namespace CalcEngine
Number const& P() const;
Number const& Q() const;
Rational Negate() const;
Rational Add(Rational const& rhs, int32_t precision) const;
Rational Sub(Rational const& rhs, int32_t precision) const;
Rational Mul(Rational const& rhs, int32_t precision) const;
Rational Div(Rational const& rhs, int32_t precision) const;
Rational Mod(Rational const& rhs) const;
Rational operator-() const;
Rational& operator+=(Rational const& rhs);
Rational& operator-=(Rational const& rhs);
Rational& operator*=(Rational const& rhs);
Rational& operator/=(Rational const& rhs);
Rational& operator%=(Rational const& rhs);
Rational Lsh(Rational const& r, int32_t precision) const;
Rational Rsh(Rational const& r, int32_t precision) const;
Rational& operator<<=(Rational const& rhs);
Rational& operator>>=(Rational const& rhs);
Rational Not(Rational const& chopNum, int32_t precision) const;
Rational And(Rational const& r, int32_t precision) const;
Rational Or(Rational const& r, int32_t precision) const;
Rational Xor(Rational const& r, int32_t precision) const;
Rational& operator&=(Rational const& rhs);
Rational& operator|=(Rational const& rhs);
Rational& operator^=(Rational const& rhs);
bool IsZero() const;
bool IsLess(Rational const& r, int32_t precision) const;
bool IsLessEq(Rational const& r, int32_t precision) const;
bool IsGreaterEq(Rational const& r, int32_t precision) const;
bool IsEq(Rational const& r, int32_t precision) const;
friend Rational operator+(Rational lhs, Rational const& rhs);
friend Rational operator-(Rational lhs, Rational const& rhs);
friend Rational operator*(Rational lhs, Rational const& rhs);
friend Rational operator/(Rational lhs, Rational const& rhs);
friend Rational operator%(Rational lhs, Rational const& rhs);
friend Rational operator<<(Rational lhs, Rational const& rhs);
friend Rational operator>>(Rational lhs, Rational const& rhs);
friend Rational operator&(Rational lhs, Rational const& rhs);
friend Rational operator|(Rational lhs, Rational const& rhs);
friend Rational operator^(Rational lhs, Rational const& rhs);
friend bool operator==(Rational const& lhs, Rational const& rhs);
friend bool operator!=(Rational const& lhs, Rational const& rhs);
friend bool operator<(Rational const& lhs, Rational const& rhs);
friend bool operator>(Rational const& lhs, Rational const& rhs);
friend bool operator<=(Rational const& lhs, Rational const& rhs);
friend bool operator>=(Rational const& lhs, Rational const& rhs);
std::wstring ToString(uint32_t radix, NUMOBJ_FMT format, int32_t precision) const;
uint64_t ToUInt64_t(int32_t precision) const;
uint64_t ToUInt64_t() const;
private:
Number m_p;

View File

@ -5,31 +5,31 @@
namespace CalcEngine::RationalMath
{
Rational Frac(Rational const& rat, int32_t precision);
Rational Integer(Rational const& rat, int32_t precision);
Rational Frac(Rational const& rat);
Rational Integer(Rational const& rat);
Rational Pow(Rational const& base, Rational const& pow, int32_t precision);
Rational Root(Rational const& base, Rational const& root, int32_t precision);
Rational Fact(Rational const& rat, int32_t precision);
Rational Pow(Rational const& base, Rational const& pow);
Rational Root(Rational const& base, Rational const& root);
Rational Fact(Rational const& rat);
Rational Exp(Rational const& rat, int32_t precision);
Rational Log(Rational const& rat, int32_t precision);
Rational Log10(Rational const& rat, int32_t precision);
Rational Exp(Rational const& rat);
Rational Log(Rational const& rat);
Rational Log10(Rational const& rat);
Rational Invert(Rational const& rat, int32_t precision);
Rational Invert(Rational const& rat);
Rational Abs(Rational const& rat);
Rational Sin(Rational const& rat, ANGLE_TYPE angletype, int32_t precision);
Rational Cos(Rational const& rat, ANGLE_TYPE angletype, int32_t precision);
Rational Tan(Rational const& rat, ANGLE_TYPE angletype, int32_t precision);
Rational ASin(Rational const& rat, ANGLE_TYPE angletype, int32_t precision);
Rational ACos(Rational const& rat, ANGLE_TYPE angletype, int32_t precision);
Rational ATan(Rational const& rat, ANGLE_TYPE angletype, int32_t precision);
Rational Sin(Rational const& rat, ANGLE_TYPE angletype);
Rational Cos(Rational const& rat, ANGLE_TYPE angletype);
Rational Tan(Rational const& rat, ANGLE_TYPE angletype);
Rational ASin(Rational const& rat, ANGLE_TYPE angletype);
Rational ACos(Rational const& rat, ANGLE_TYPE angletype);
Rational ATan(Rational const& rat, ANGLE_TYPE angletype);
Rational Sinh(Rational const& rat, int32_t precision);
Rational Cosh(Rational const& rat, int32_t precision);
Rational Tanh(Rational const& rat, int32_t precision);
Rational ASinh(Rational const& rat, int32_t precision);
Rational ACosh(Rational const& rat, int32_t precision);
Rational ATanh(Rational const& rat, int32_t precision);
Rational Sinh(Rational const& rat);
Rational Cosh(Rational const& rat);
Rational Tanh(Rational const& rat);
Rational ASinh(Rational const& rat);
Rational ACosh(Rational const& rat);
Rational ATanh(Rational const& rat);
}

View File

@ -1259,20 +1259,7 @@ wstring NumberToString(_Inout_ PNUMBER& pnum, int format, uint32_t radix, int32_
//-----------------------------------------------------------------------------
wstring RatToString(_Inout_ PRAT& prat, int format, uint32_t radix, int32_t precision)
{
// Convert p and q of rational form from internal base to requested base.
// Scale by largest power of BASEX possible.
long scaleby = min(prat->pp->exp, prat->pq->exp);
scaleby = max(scaleby, 0);
prat->pp->exp -= scaleby;
prat->pq->exp -= scaleby;
PNUMBER p = nRadixxtonum(prat->pp, radix, precision);
PNUMBER q = nRadixxtonum(prat->pq, radix, precision);
// finally take the time hit to actually divide.
divnum(&p, q, radix, precision);
destroynum(q);
PNUMBER p = RatToNumber(prat, radix, precision);
wstring result = NumberToString(p, format, radix, precision);
destroynum(p);
@ -1280,6 +1267,40 @@ wstring RatToString(_Inout_ PRAT& prat, int format, uint32_t radix, int32_t prec
return result;
}
PNUMBER RatToNumber(_In_ PRAT prat, uint32_t radix, int32_t precision)
{
PRAT temprat = nullptr;
DUPRAT(temprat, prat);
// Convert p and q of rational form from internal base to requested base.
// Scale by largest power of BASEX possible.
long scaleby = min(temprat->pp->exp, temprat->pq->exp);
scaleby = max(scaleby, 0);
temprat->pp->exp -= scaleby;
temprat->pq->exp -= scaleby;
PNUMBER p = nRadixxtonum(temprat->pp, radix, precision);
PNUMBER q = nRadixxtonum(temprat->pq, radix, precision);
destroyrat(temprat);
// finally take the time hit to actually divide.
divnum(&p, q, radix, precision);
destroynum(q);
return p;
}
// Converts a PRAT to a PNUMBER and back to a PRAT, flattening/simplifying the rational in the process
void flatrat(_Inout_ PRAT& prat, uint32_t radix, int32_t precision)
{
PNUMBER pnum = RatToNumber(prat, radix, precision);
destroyrat(prat);
prat = numtorat(pnum, radix);
destroynum(pnum);
}
//-----------------------------------------------------------------------------
//
// FUNCTION: gcd

View File

@ -73,16 +73,11 @@ void gcdrat( PRAT *pa, uint32_t radix, int32_t precision)
void fracrat( PRAT *pa , uint32_t radix, int32_t precision)
{
// Only do the intrat operation if number is nonzero.
// Only do the flatrat operation if number is nonzero.
// and only if the bottom part is not one.
if ( !zernum( (*pa)->pp ) && !equnum( (*pa)->pq, num_one ) )
{
wstring ratStr = RatToString(*pa, FMT_FLOAT, radix, precision);
PNUMBER pnum = StringToNumber(ratStr, radix, precision);
destroyrat( *pa );
*pa = numtorat( pnum, radix);
destroynum( pnum );
flatrat(*pa, radix, precision);
}
remnum( &((*pa)->pp), (*pa)->pq, BASEX );

View File

@ -1,4 +1,4 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
#pragma once
@ -316,6 +316,10 @@ extern std::wstring NumberToString(_Inout_ PNUMBER& pnum, int format, uint32_t r
// returns a text representation of a PRAT
extern std::wstring RatToString(_Inout_ PRAT& prat, int format, uint32_t radix, int32_t precision);
// converts a PRAT into a PNUMBER
extern PNUMBER RatToNumber(_In_ PRAT prat, uint32_t radix, int32_t precision);
// flattens a PRAT by converting it to a PNUMBER and back to a PRAT
extern void flatrat(_Inout_ PRAT& prat, uint32_t radix, int32_t precision);
extern long numtolong(_In_ PNUMBER pnum, uint32_t radix );
extern long rattolong(_In_ PRAT prat, uint32_t radix, int32_t precision);

View File

@ -291,19 +291,18 @@ void intrat( PRAT *px, uint32_t radix, int32_t precision)
// and only if the bottom part is not one.
if ( !zernum( (*px)->pp ) && !equnum( (*px)->pq, num_one ) )
{
wstring ratStr = RatToString(*px, FMT_FLOAT, radix, precision);
PNUMBER pnum = StringToNumber(ratStr, radix, precision);
destroyrat( *px );
*px = numtorat( pnum, radix);
destroynum( pnum );
flatrat(*px, radix, precision);
// Subtract the fractional part of the rational
PRAT pret = nullptr;
DUPRAT(pret,*px);
modrat( &pret, rat_one );
subrat( px, pret, precision);
destroyrat( pret );
// Simplify the value if possible to resolve rounding errors
flatrat(*px, radix, precision);
}
}