// Formatting library for C++ - legacy printf implementation // // Copyright (c) 2012 - 2016, Victor Zverovich // All rights reserved. // // For the license information refer to format.h. #ifndef FMT_PRINTF_H_ #define FMT_PRINTF_H_ #include <algorithm> // std::max #include <limits> // std::numeric_limits #include "format.h" FMT_BEGIN_NAMESPACE FMT_MODULE_EXPORT_BEGIN template <typename T> struct printf_formatter { printf_formatter() = delete; }; template <typename Char> class basic_printf_parse_context : public basic_format_parse_context<Char> { using basic_format_parse_context<Char>::basic_format_parse_context; }; template <typename OutputIt, typename Char> class basic_printf_context { private: OutputIt out_; basic_format_args<basic_printf_context> args_; public: using char_type = Char; using format_arg = basic_format_arg<basic_printf_context>; using parse_context_type = basic_printf_parse_context<Char>; template <typename T> using formatter_type = printf_formatter<T>; /** \rst Constructs a ``printf_context`` object. References to the arguments are stored in the context object so make sure they have appropriate lifetimes. \endrst */ basic_printf_context(OutputIt out, basic_format_args<basic_printf_context> args) : out_(out), args_(args) {} OutputIt out() { return out_; } void advance_to(OutputIt it) { out_ = it; } detail::locale_ref locale() { return {}; } format_arg arg(int id) const { return args_.get(id); } FMT_CONSTEXPR void on_error(const char* message) { detail::error_handler().on_error(message); } }; FMT_BEGIN_DETAIL_NAMESPACE // Checks if a value fits in int - used to avoid warnings about comparing // signed and unsigned integers. template <bool IsSigned> struct int_checker { template <typename T> static bool fits_in_int(T value) { unsigned max = max_value<int>(); return value <= max; } static bool fits_in_int(bool) { return true; } }; template <> struct int_checker<true> { template <typename T> static bool fits_in_int(T value) { return value >= (std::numeric_limits<int>::min)() && value <= max_value<int>(); } static bool fits_in_int(int) { return true; } }; class printf_precision_handler { public: template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)> int operator()(T value) { if (!int_checker<std::numeric_limits<T>::is_signed>::fits_in_int(value)) FMT_THROW(format_error("number is too big")); return (std::max)(static_cast<int>(value), 0); } template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value)> int operator()(T) { FMT_THROW(format_error("precision is not integer")); return 0; } }; // An argument visitor that returns true iff arg is a zero integer. class is_zero_int { public: template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)> bool operator()(T value) { return value == 0; } template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value)> bool operator()(T) { return false; } }; template <typename T> struct make_unsigned_or_bool : std::make_unsigned<T> {}; template <> struct make_unsigned_or_bool<bool> { using type = bool; }; template <typename T, typename Context> class arg_converter { private: using char_type = typename Context::char_type; basic_format_arg<Context>& arg_; char_type type_; public: arg_converter(basic_format_arg<Context>& arg, char_type type) : arg_(arg), type_(type) {} void operator()(bool value) { if (type_ != 's') operator()<bool>(value); } template <typename U, FMT_ENABLE_IF(std::is_integral<U>::value)> void operator()(U value) { bool is_signed = type_ == 'd' || type_ == 'i'; using target_type = conditional_t<std::is_same<T, void>::value, U, T>; if (const_check(sizeof(target_type) <= sizeof(int))) { // Extra casts are used to silence warnings. if (is_signed) { arg_ = detail::make_arg<Context>( static_cast<int>(static_cast<target_type>(value))); } else { using unsigned_type = typename make_unsigned_or_bool<target_type>::type; arg_ = detail::make_arg<Context>( static_cast<unsigned>(static_cast<unsigned_type>(value))); } } else { if (is_signed) { // glibc's printf doesn't sign extend arguments of smaller types: // std::printf("%lld", -42); // prints "4294967254" // but we don't have to do the same because it's a UB. arg_ = detail::make_arg<Context>(static_cast<long long>(value)); } else { arg_ = detail::make_arg<Context>( static_cast<typename make_unsigned_or_bool<U>::type>(value)); } } } template <typename U, FMT_ENABLE_IF(!std::is_integral<U>::value)> void operator()(U) {} // No conversion needed for non-integral types. }; // Converts an integer argument to T for printf, if T is an integral type. // If T is void, the argument is converted to corresponding signed or unsigned // type depending on the type specifier: 'd' and 'i' - signed, other - // unsigned). template <typename T, typename Context, typename Char> void convert_arg(basic_format_arg<Context>& arg, Char type) { visit_format_arg(arg_converter<T, Context>(arg, type), arg); } // Converts an integer argument to char for printf. template <typename Context> class char_converter { private: basic_format_arg<Context>& arg_; public: explicit char_converter(basic_format_arg<Context>& arg) : arg_(arg) {} template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)> void operator()(T value) { arg_ = detail::make_arg<Context>( static_cast<typename Context::char_type>(value)); } template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value)> void operator()(T) {} // No conversion needed for non-integral types. }; // An argument visitor that return a pointer to a C string if argument is a // string or null otherwise. template <typename Char> struct get_cstring { template <typename T> const Char* operator()(T) { return nullptr; } const Char* operator()(const Char* s) { return s; } }; // Checks if an argument is a valid printf width specifier and sets // left alignment if it is negative. template <typename Char> class printf_width_handler { private: using format_specs = basic_format_specs<Char>; format_specs& specs_; public: explicit printf_width_handler(format_specs& specs) : specs_(specs) {} template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)> unsigned operator()(T value) { auto width = static_cast<uint32_or_64_or_128_t<T>>(value); if (detail::is_negative(value)) { specs_.align = align::left; width = 0 - width; } unsigned int_max = max_value<int>(); if (width > int_max) FMT_THROW(format_error("number is too big")); return static_cast<unsigned>(width); } template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value)> unsigned operator()(T) { FMT_THROW(format_error("width is not integer")); return 0; } }; // The ``printf`` argument formatter. template <typename OutputIt, typename Char> class printf_arg_formatter : public arg_formatter<Char> { private: using base = arg_formatter<Char>; using context_type = basic_printf_context<OutputIt, Char>; using format_specs = basic_format_specs<Char>; context_type& context_; OutputIt write_null_pointer(bool is_string = false) { auto s = this->specs; s.type = presentation_type::none; return write_bytes(this->out, is_string ? "(null)" : "(nil)", s); } public: printf_arg_formatter(OutputIt iter, format_specs& s, context_type& ctx) : base{iter, s, locale_ref()}, context_(ctx) {} OutputIt operator()(monostate value) { return base::operator()(value); } template <typename T, FMT_ENABLE_IF(detail::is_integral<T>::value)> OutputIt operator()(T value) { // MSVC2013 fails to compile separate overloads for bool and Char so use // std::is_same instead. if (std::is_same<T, Char>::value) { format_specs fmt_specs = this->specs; if (fmt_specs.type != presentation_type::none && fmt_specs.type != presentation_type::chr) { return (*this)(static_cast<int>(value)); } fmt_specs.sign = sign::none; fmt_specs.alt = false; fmt_specs.fill[0] = ' '; // Ignore '0' flag for char types. // align::numeric needs to be overwritten here since the '0' flag is // ignored for non-numeric types if (fmt_specs.align == align::none || fmt_specs.align == align::numeric) fmt_specs.align = align::right; return write<Char>(this->out, static_cast<Char>(value), fmt_specs); } return base::operator()(value); } template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value)> OutputIt operator()(T value) { return base::operator()(value); } /** Formats a null-terminated C string. */ OutputIt operator()(const char* value) { if (value) return base::operator()(value); return write_null_pointer(this->specs.type != presentation_type::pointer); } /** Formats a null-terminated wide C string. */ OutputIt operator()(const wchar_t* value) { if (value) return base::operator()(value); return write_null_pointer(this->specs.type != presentation_type::pointer); } OutputIt operator()(basic_string_view<Char> value) { return base::operator()(value); } /** Formats a pointer. */ OutputIt operator()(const void* value) { return value ? base::operator()(value) : write_null_pointer(); } /** Formats an argument of a custom (user-defined) type. */ OutputIt operator()(typename basic_format_arg<context_type>::handle handle) { auto parse_ctx = basic_printf_parse_context<Char>(basic_string_view<Char>()); handle.format(parse_ctx, context_); return this->out; } }; template <typename Char> void parse_flags(basic_format_specs<Char>& specs, const Char*& it, const Char* end) { for (; it != end; ++it) { switch (*it) { case '-': specs.align = align::left; break; case '+': specs.sign = sign::plus; break; case '0': specs.fill[0] = '0'; break; case ' ': if (specs.sign != sign::plus) { specs.sign = sign::space; } break; case '#': specs.alt = true; break; default: return; } } } template <typename Char, typename GetArg> int parse_header(const Char*& it, const Char* end, basic_format_specs<Char>& specs, GetArg get_arg) { int arg_index = -1; Char c = *it; if (c >= '0' && c <= '9') { // Parse an argument index (if followed by '$') or a width possibly // preceded with '0' flag(s). int value = parse_nonnegative_int(it, end, -1); if (it != end && *it == '$') { // value is an argument index ++it; arg_index = value != -1 ? value : max_value<int>(); } else { if (c == '0') specs.fill[0] = '0'; if (value != 0) { // Nonzero value means that we parsed width and don't need to // parse it or flags again, so return now. if (value == -1) FMT_THROW(format_error("number is too big")); specs.width = value; return arg_index; } } } parse_flags(specs, it, end); // Parse width. if (it != end) { if (*it >= '0' && *it <= '9') { specs.width = parse_nonnegative_int(it, end, -1); if (specs.width == -1) FMT_THROW(format_error("number is too big")); } else if (*it == '*') { ++it; specs.width = static_cast<int>(visit_format_arg( detail::printf_width_handler<Char>(specs), get_arg(-1))); } } return arg_index; } template <typename Char, typename Context> void vprintf(buffer<Char>& buf, basic_string_view<Char> format, basic_format_args<Context> args) { using OutputIt = buffer_appender<Char>; auto out = OutputIt(buf); auto context = basic_printf_context<OutputIt, Char>(out, args); auto parse_ctx = basic_printf_parse_context<Char>(format); // Returns the argument with specified index or, if arg_index is -1, the next // argument. auto get_arg = [&](int arg_index) { if (arg_index < 0) arg_index = parse_ctx.next_arg_id(); else parse_ctx.check_arg_id(--arg_index); return detail::get_arg(context, arg_index); }; const Char* start = parse_ctx.begin(); const Char* end = parse_ctx.end(); auto it = start; while (it != end) { if (!detail::find<false, Char>(it, end, '%', it)) { it = end; // detail::find leaves it == nullptr if it doesn't find '%' break; } Char c = *it++; if (it != end && *it == c) { out = detail::write( out, basic_string_view<Char>(start, detail::to_unsigned(it - start))); start = ++it; continue; } out = detail::write(out, basic_string_view<Char>( start, detail::to_unsigned(it - 1 - start))); basic_format_specs<Char> specs; specs.align = align::right; // Parse argument index, flags and width. int arg_index = parse_header(it, end, specs, get_arg); if (arg_index == 0) parse_ctx.on_error("argument not found"); // Parse precision. if (it != end && *it == '.') { ++it; c = it != end ? *it : 0; if ('0' <= c && c <= '9') { specs.precision = parse_nonnegative_int(it, end, 0); } else if (c == '*') { ++it; specs.precision = static_cast<int>( visit_format_arg(detail::printf_precision_handler(), get_arg(-1))); } else { specs.precision = 0; } } auto arg = get_arg(arg_index); // For d, i, o, u, x, and X conversion specifiers, if a precision is // specified, the '0' flag is ignored if (specs.precision >= 0 && arg.is_integral()) specs.fill[0] = ' '; // Ignore '0' flag for non-numeric types or if '-' present. if (specs.precision >= 0 && arg.type() == detail::type::cstring_type) { auto str = visit_format_arg(detail::get_cstring<Char>(), arg); auto str_end = str + specs.precision; auto nul = std::find(str, str_end, Char()); arg = detail::make_arg<basic_printf_context<OutputIt, Char>>( basic_string_view<Char>( str, detail::to_unsigned(nul != str_end ? nul - str : specs.precision))); } if (specs.alt && visit_format_arg(detail::is_zero_int(), arg)) specs.alt = false; if (specs.fill[0] == '0') { if (arg.is_arithmetic() && specs.align != align::left) specs.align = align::numeric; else specs.fill[0] = ' '; // Ignore '0' flag for non-numeric types or if '-' // flag is also present. } // Parse length and convert the argument to the required type. c = it != end ? *it++ : 0; Char t = it != end ? *it : 0; using detail::convert_arg; switch (c) { case 'h': if (t == 'h') { ++it; t = it != end ? *it : 0; convert_arg<signed char>(arg, t); } else { convert_arg<short>(arg, t); } break; case 'l': if (t == 'l') { ++it; t = it != end ? *it : 0; convert_arg<long long>(arg, t); } else { convert_arg<long>(arg, t); } break; case 'j': convert_arg<intmax_t>(arg, t); break; case 'z': convert_arg<size_t>(arg, t); break; case 't': convert_arg<std::ptrdiff_t>(arg, t); break; case 'L': // printf produces garbage when 'L' is omitted for long double, no // need to do the same. break; default: --it; convert_arg<void>(arg, c); } // Parse type. if (it == end) FMT_THROW(format_error("invalid format string")); char type = static_cast<char>(*it++); if (arg.is_integral()) { // Normalize type. switch (type) { case 'i': case 'u': type = 'd'; break; case 'c': visit_format_arg( detail::char_converter<basic_printf_context<OutputIt, Char>>(arg), arg); break; } } specs.type = parse_presentation_type(type); if (specs.type == presentation_type::none) parse_ctx.on_error("invalid type specifier"); start = it; // Format argument. out = visit_format_arg( detail::printf_arg_formatter<OutputIt, Char>(out, specs, context), arg); } detail::write(out, basic_string_view<Char>(start, to_unsigned(it - start))); } FMT_END_DETAIL_NAMESPACE template <typename Char> using basic_printf_context_t = basic_printf_context<detail::buffer_appender<Char>, Char>; using printf_context = basic_printf_context_t<char>; using wprintf_context = basic_printf_context_t<wchar_t>; using printf_args = basic_format_args<printf_context>; using wprintf_args = basic_format_args<wprintf_context>; /** \rst Constructs an `~fmt::format_arg_store` object that contains references to arguments and can be implicitly converted to `~fmt::printf_args`. \endrst */ template <typename... T> inline auto make_printf_args(const T&... args) -> format_arg_store<printf_context, T...> { return {args...}; } /** \rst Constructs an `~fmt::format_arg_store` object that contains references to arguments and can be implicitly converted to `~fmt::wprintf_args`. \endrst */ template <typename... T> inline auto make_wprintf_args(const T&... args) -> format_arg_store<wprintf_context, T...> { return {args...}; } template <typename S, typename Char = char_t<S>> inline auto vsprintf( const S& fmt, basic_format_args<basic_printf_context_t<type_identity_t<Char>>> args) -> std::basic_string<Char> { basic_memory_buffer<Char> buffer; vprintf(buffer, detail::to_string_view(fmt), args); return to_string(buffer); } /** \rst Formats arguments and returns the result as a string. **Example**:: std::string message = fmt::sprintf("The answer is %d", 42); \endrst */ template <typename S, typename... T, typename Char = enable_if_t<detail::is_string<S>::value, char_t<S>>> inline auto sprintf(const S& fmt, const T&... args) -> std::basic_string<Char> { using context = basic_printf_context_t<Char>; return vsprintf(detail::to_string_view(fmt), fmt::make_format_args<context>(args...)); } template <typename S, typename Char = char_t<S>> inline auto vfprintf( std::FILE* f, const S& fmt, basic_format_args<basic_printf_context_t<type_identity_t<Char>>> args) -> int { basic_memory_buffer<Char> buffer; vprintf(buffer, detail::to_string_view(fmt), args); size_t size = buffer.size(); return std::fwrite(buffer.data(), sizeof(Char), size, f) < size ? -1 : static_cast<int>(size); } /** \rst Prints formatted data to the file *f*. **Example**:: fmt::fprintf(stderr, "Don't %s!", "panic"); \endrst */ template <typename S, typename... T, typename Char = char_t<S>> inline auto fprintf(std::FILE* f, const S& fmt, const T&... args) -> int { using context = basic_printf_context_t<Char>; return vfprintf(f, detail::to_string_view(fmt), fmt::make_format_args<context>(args...)); } template <typename S, typename Char = char_t<S>> inline auto vprintf( const S& fmt, basic_format_args<basic_printf_context_t<type_identity_t<Char>>> args) -> int { return vfprintf(stdout, detail::to_string_view(fmt), args); } /** \rst Prints formatted data to ``stdout``. **Example**:: fmt::printf("Elapsed time: %.2f seconds", 1.23); \endrst */ template <typename S, typename... T, FMT_ENABLE_IF(detail::is_string<S>::value)> inline auto printf(const S& fmt, const T&... args) -> int { return vprintf( detail::to_string_view(fmt), fmt::make_format_args<basic_printf_context_t<char_t<S>>>(args...)); } FMT_MODULE_EXPORT_END FMT_END_NAMESPACE #endif // FMT_PRINTF_H_